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1 Introduction

This tutorial sets out in an accessible form the mathematical theory of epi-
demics based on a Susceptible-Infected-Removed model with heterogeneous
susceptibility. The first general treatment of this was given by Novozhilov
[2008a,b, 2012]. Other papers extended his derivation of the size of an
epidemic Miller [2012], Katriel [2012] but without application to real data.
Novozhilov did not consider the case in which infectivity was correlated with
susceptibility; this was developed by Gomes et al. [2020] and Tkachenko et al.
[2021].

Applications of this theory to the COVID-19 epidemic were posted as
preprints from May 2020 onwards [Gomes et al., 2020, Colombo et al., 2020,
Neipel et al., 2020]. A more general commentary on the limitations of math-
ematical models for guiding policy in the pandemic has been uploaded as a
preprint [McKeigue and Wood, 2022].

2 Notation

The notation used here is a simplified version of that used in Novozhilov’s
articles, with some alterations to maintain consistency between quantities
that are dimensionless and quantities that have dimension T−1 where T is
the time dimension.

� The population is divided into three compartments: Susceptible S,
Infected I and Removed V . These fractions sum to 1. Inclusion of
an Exposed E compartment as an intermediate stage between S and
I does not make any difference to the results derived here. I’ll use V
for the proportion removed, as we use R for the reproduction number,
defined as the average number of new cases infected by each case.

� S, I and V are functions of time t. I use subscripts to denote depen-
dence on t, so where relevant these are written as St, It, Vt. At the
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start of the epidemic all individuals are susceptible, thus S0 = 1. At
the end of the epidemic, the proportion remaining susceptible is S∞.
The final size of the epidemic (final proportion infected) is 1− S∞.

� The prevalence of infection at time t is It

� The arrival rate of infection is −dSt

dt

� The incidence of infection is the arrival rate divided by the population

at risk. −dSt/dt

St

� The transmission function gives the arrival rate −dSt

dt
as a function

of the susceptible fraction St and the prevalence of infection It. It has
dimension T−1

� The reproduction number Rt is the average number of individuals in-
fected by each new case arising at time t. I use subscripts to denote
the value at time t, and parentheses when the argument is the fraction
of the population who are susceptible: thus R0 is the basic repro-
duction number at t = 0, and R(S) is the reproduction number
when the fraction susceptible is S.

� Susceptibility ω is defined as a multiplicative factor, varying between
individuals but a fixed attribute of each individual, that scales the
incidence /prevalence ratio. ω is scaled to have mean 1 at t = 0.

� The incidence at time t in individuals having susceptibility 1 is the
force of infection, a rather confusing term as it is a scalar, not a
vector.

� ⟨ω⟩t is the average of ω taken over its probability distribution among
susceptible individuals. This use of angled brackets to denote an ex-
pectation is standard notation in physics.

� The ratio β of the incidence of infection in individuals whose sus-
ceptiblity is 1 to prevalence is the transmission coefficient. β has
dimension T−1.

3 Homogeneous model

For this analysis, the classic Susceptible(-Exposed)-Infectious-Removed model
formulated by Kermack and McKendrick [1927] can be defined by two differ-
ential equations (the intermediate ones for the rate of change of the Exposed
and Infectious compartments are not needed for this analysis.
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dS

dt
= −βStIt (1)

dV

dt
= γIt (2)

β is the transmission coefficient, defined above, and γ is the rate of
removal from the infectious compartment I. β and γ have dimension T−1.

At t = 0, S = 1 and the basic reproduction number R0 is
β

γ
The reproduction number R(S) when the fraction susceptible is S is

R0S and thus at the herd immunity threshold, when R(S) = 1, S =
1

R0
Dividing equation 1 by equation 2 we have

dS

dV
= −R0S (3)

Integrating from t = 0 to t = ∞ we obtain an equation for the proportion
S∞ of the population who are still susceptible at the end of the epidemic

∫ S∞

1

dSt

St
= −R0

∫ V∞

0
dVt (4)

logS∞ = −R0(1− S∞) (5)

Taking exponents we have

S∞ = e−R0(1−S∞) (6)

4 Heterogeneous susceptibility

We allow susceptibility, defined as a quantity that is fixed within individuals
and scales the incidence / prevalence ratio, to vary between individuals. The
distribution of susceptibility at time t is a mixture of a spike at zero in the
fraction (1 − St) of the population who are no longer susceptible, and a
probability density over values of ω from 0 to infinity in the fraction St who
are still susceptible. st(ω)dω is the fraction of the population who at time t
have susceptibility between ω and ω + dω.∫ ∞

0
st(ω)dω = St (7)

We write pt(ω) for the density of susceptibility in the susceptible com-
partment at time t

pt(ω) =
st(ω)

St
(8)

3



pt(ω) is a probability density that integrates to 1, but st(ω) is not a
probability density except at t = 0: it integrates to St.

The average susceptibility in the susceptible compartment at time t is

⟨ω⟩t =
∫

ωtpt(ω)dω (9)

4.1 Incidence at time t in individuals with susceptibility ω

At time t, the incidence in individuals with susceptibility ω is proportional
to the incidence in individuals with susceptibility 1.

dst(ω)

dt

1

st(ω)
= −ω

dq

dt
(10)

where
dqt
dt

is the force of infection defined as above.

The dimensionless function qt is

∫ t

0

dqt
dt

dt with the initial condition q0 =

0. qt can be defined as the expected number of infectious contacts received
by an individual with susceptibility 1 up to time t (In Novozhilov’s notation,
dqt
dt is defined to be negative).

Integrating equation 10 with respect to t and taking exponents

st(ω) = s0(ω)e
−ωqt (11)

(12)

As s0(ω) = p0(ω) and pt(ω)St = st(ω), we can write the probability
density at time t in terms of p0(ω)e

ωqt

pt(ω) =
p0(ω)e

−ωqt

St
(13)

4.2 Susceptible fraction S at time t

Integrating equation 13 with respect to ω with initial conditions S0 = 1 and
q0 = 0, we have

1 =
1

St

∫
e−ωqtpo(ω)dω (14)

St = M(−qt) (15)

whereM(θ) is the moment generating function of the probability density
p0(ω).
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The moment generating function Mt(θ) of the probability density pt(ω)
is

Mt(θ) =

∫
eωθpt(ω)dω (16)

(17)

Using equation 13 to substitute for pt(ω)

Mt(θ) =
1

St

∫
eωθe−ωqtp0(ω)dω (18)

=
M(θ − qt)

M(−qt)
(19)

This equation was first obtained by Karev [2005] studying the growth
of populations. Physicists will recognize this identity as expressing the mo-
ment generating function of the distribution of energy states in a canonical
ensemble as the ratio of the partition function at coolness (qt − θ) to the
partition function at coolness qt. M(−qt) is the normalizing constant of
the unnormalized density st(ω). We can thus think of qt as the “coolness”
of the epidemic. Initially the “coolness” of the epidemic is 0 (temperature
is infinite); as the most susceptible individuals are removed, the epidemic
cools (qt increases).

It follows that the first and second moments of susceptibility ω within
the susceptible compartment at time t are given by

⟨ωt⟩ =
M′(−qt)

St
(20)

⟨ω2
t ⟩ =

M′′(−qt)

St
(21)

where M′() and M′′() are respectively the first and second derivatives
of the moment generating function.

From equation 19 we can derive the entire trajectory of the epidemic,
including the herd immunity threshold and the final size of the epidemic
given only the basic reproduction number R0 and the initial distribution
p(ω) or its moment generating function. To scale the epidemic trajectory
by time, we need to specify one of the rate parameters β or γ.

4.3 Effective susceptible fraction

We can write the transmission function in the form
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dSt

dt
= −h(St)

dqt
dt

(22)

where h(St) is the effective susceptible fraction, defined as ⟨ω⟩t St.
We can express this equation for the transmission function in words as

Arrival rate = effective susceptible fraction × force of infection

We can write the effective susceptible fraction as

h(S) = M′(−qt) (23)

= M′(−M−1(S)) (24)

as qt = −M−1(St)
h(S) depends only on S, so we can leave off the subscript t. Because

the most susceptible individuals are selectively removed from the susceptible
compartment, h(S) < S after time t = 0 if there is heterogeneity.

The homogeneous model is a special case of this more general model, in
which the density p(ω) is a spike at 1, M(θ) = eθ and h(S) = S. Unless
the model is homogeneous, h(S) will be a non-linear function of S. Speci-
fying a transmission function that is a linear function of S is thus
equivalent to assuming no heterogeneity of susceptibility (beyond
whatever stratification is specified explicitly in the model). Any
heterogeneity of susceptibility in the population (as long as the moment
generating function of the initial probability distribution exists) can be rep-
resented by a non-linear transmission function.

The empirical use of of a non-linear transmission function dates back to
the 1990s (Anderson and May 1992; Antonovics et al. 1995; Mollison 1995)
but no theoretical basis for this was available until 1997, when Dwyer et al.
[1997] showed that a gamma distribution of susceptibility would give rise to
a power law for the transmission function.

4.4 Reproduction number

The reproduction number Rt at time t is the average reproduction number
over all new cases at time t.

Write r(ω) for the expected number infected by a single case with sus-
ceptibility ω in a fully susceptible population with average susceptibility
1.

At time t, the probability density of susceptibility among new cases will
be proportional to ωpt(ω). If the infectious period is short, the distribution
of susceptibility in the infectious state at time t can be approximated by
the distribution among new cases arising at time t. The expected number
infected by a single case with susceptibility ω is then St⟨ω⟩tr(ω).
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Rt =

∫
St⟨ω⟩tr(ω)

ωpt(ω)

⟨ω⟩t
dω (25)

= St

∫
r(ω)ωe−ωqtp0(ω)dω (26)

In the limiting cases rt(ω) = R0 (uncorrelated susceptibility) and rt(ω) =
R0ω (heterogeneous connectivity) this expression can be evaluated in terms
of derivatives of the moment generating function as described below.

5 Two limiting cases of heterogeneity

Two possible models for heterogeneity are: (a) susceptibility is uncorre-
lated with infectivity; (b) susceptibility and infectivity perfectly correlated.
Where individual susceptibility depends only on pre-existing resistance to
infection, model (a) would be realistic. Where individual susceptibility de-
pends only on the number of contacts, infectivity will be highly correlated
with susceptibility. For these two limiting cases (a) and (b), simple ex-
pressions can be derived for the reproduction number and the epidemic
trajectory.

5.1 Model (a): uncorrelated susceptibility

Extending the mass action kinetics underlying the Kermack-McKendrick
model, the equation for the incidence rate at time t in individuals having
susceptibility ω is

∂st(ω)

∂t

1

st(ω)
= βωIt (27)

For the total population, the arrival rate is

dSt

dt
= −β ⟨ω⟩t StIt (28)

The force of infection −dqt
dt

is βIt and the transmission function is

−β ⟨ω⟩t St.
The reproduction number at time t is

Rt

R0
= St

∫
ωe−ωqtpo(ω)dω (29)

= St
M′(−qt)

St
= h(St) (30)
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Thus with uncorrelated susceptibility, the reproduction number when
the proportion susceptible is S depends only on the effective susceptible
fraction and the basic reproduction number R0.

R(S)

R0
= h(S) (31)

To obtain an equation for the proportion susceptible at the end of the
epidemic we again use dS

dV and integrate from t = 0 to t = ∞

dS

dV
= R0h(S) (32)

∫ S∞

1

dSt

h(St)
= R0

∫ V∞

0
dVt (33)

= −R0(1− S∞) (34)

5.2 Model (b): heterogeneous connectivity

The incidence rate at time t in infection in individuals having susceptibility
ω is proportional to the average value of ω among those infected. If the
infectious period is short, we can disregard the change in the distribution of
ω in the population from the time at which those who are in the infectious
compartment became infected to time t.

The incidence rate at time t in individuals having susceptibility ω (force
of infection) is proportional to the average value of ω in the susceptible
compartment at time t

dst(ω)

dt

1

st(ω)
= −βω ⟨ω⟩t It (35)

(36)

For the total population, the arrival rate is

dSt

dt
= −βh(S) ⟨ω⟩t StIt (37)

The force of infection
dqt
dt

is β ⟨ω⟩t It

With heterogeneous connectivity, the reproduction number depends also
on the average susceptibility in the susceptible compartment because that
determines the average infectivity of those who are infected.
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Rt

R0
=

1

⟨ω2⟩0
St

∫
ω2e−ωqtpo(ω)dω (38)

=
1

⟨ω2⟩0
St

M′′(−qt)

St
(39)

=

〈
ω2

〉
t

⟨ω2⟩0
=

M′′(−qt)

M′′(0)
(40)

The equation for the proportion susceptible at the end of the epidemic
is derived as before

dS

dV
= R0h(S)⟨ω⟩t (41)

∫ S∞

1

dSt

h(St)⟨ω⟩t
= −R0(1− S∞) (42)

These results, which apply to any distribution of susceptibility as long as
the moment generating function of the distribution exists, are summarized
in Table 1.
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Table 1: Summary table of results under the two limiting models of hetero-
geneity

Quantity

Transmission function
dSt

dt

−h(S)
dqt
dt

Susceptible fraction St

∫
p0(ω)e

−ωqtdω = M(−qt)

Effective susceptible
fraction h(St)

M′(−qt) = M′(−M−1(S))

Average susceptibility
⟨ω⟩t in susceptible
individuals at time t

M′(−qt)

M(−qt)
=

h(St)

St

Uncorrelated susceptibility Connectivity

Basic reproduction
number R0

β

γ

〈
ω2

〉
0

β

γ

Force of infection −dqt
dt

βIt β ⟨ω⟩t It

R(S)

R0
St⟨ω⟩t = h(S)

〈
ω2

〉
t

⟨ω2⟩0

dSt

dVt
R0h(S) R0h(S) ⟨ω⟩t

Equation for
susceptible fraction S∞
at end of epidemic

∫ S∞

1

dSt

h(St)
=

−R0(1− S∞)

∫ S∞

1

dSt

h(St)⟨ω⟩t
=

−R0(1− S∞)

6 Gamma distribution of susceptibility

Susceptibility ω as defined can take only positive values and the mean sus-
ceptibility at t = 0 is set to 1: otherwise the transmission coefficient β
would not be identified. This constrains the form of the distribution of ω.
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We expect susceptibility to vary as the result of many factors including im-
mune status and social connectivity. This suggests that the distribution of
susceptibility will tend to a state of maximum entropy, subject to what-
ever constraints exist. Two distributions that maximize the entropy given
the mean and one other sufficient statistic are the log-normal distribution
and the gamma distribution: the shape of these distributions is very similar
except that for a given mean and variance the log-normal distribution has
heavier tails. The gamma distribution is more mathematically convenient.

The gamma distribution has two parameters: shape and inverse scale.
As the mean of the distribution is equal to the shape parameter divided
by the inverse scale parameter. Specifying the density p0(ω) as a gamma
density with mean 1 specifies that the inverse scale parameter is equal to
the shape parameter α, and that the variance is 1/α.

The shape parameter can take positive values up to infinity. As α tends
to infinity, the density tends to a spike at 1 and the model becomes the
homogenenous model. Other authors use the coefficient of variation, which
is 1/

√
α, instead of the shape parameter α.

The moment generating function of a gamma distribution with shape
parameter and inverse scale parameter both set to α is

M(θ) =

(
1− θ

α

)−α

(43)

The moment generating function for the distribution of susceptibility
among those remaining susceptible at time t is As the epidemic ages (qt
becomes more negative), the average susceptibility of those who remain
susceptible falls but the shape parameter α does not change.

Expressions for h(S), R(S), and S∞ where susceptibility has a gamma
distribution with mean 1 are given in Table 2 . Deriving these from M(θ)
is left as an exercise for the reader.

The ratio
R(S)

R0
is equal to S1+1/α for uncorrelated susceptibility, and

S1+2/α for heterogenous connectivity. As a function of the susceptible frac-
tion S, this ratio obeys a power law.

Tkachenko et al. [2021] use the term immunity coefficient and the
symbol λ for the exponent. The proportion susceptible at the herd immunity
threshold is R−1/λ

o

The transmission functions generated by specifying other families of dis-
tributions for susceptibility are well approximated by a power law. This

is not surprising, because the function
R(S)

R0
is constrained: it has to be

monotonic and convex downwards, falling from R0 when S = 1 at the start
of the epidemic to zero at S = 0.
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Figure 1: Transmission function and trajectory of epidemic with different
values of the immunity coefficient. Vertical dotted lines are at one minus
the herd immunity threshold

0

1

2

3

0.00

0.02

0.04

0.06

0.08

0.000.250.500.751.00

0.000.250.500.751.00

Susceptible fraction of population

Susceptible fraction of population

R
ep

ro
du

ct
io

n 
nu

m
be

r 
R

D
ai

ly
 c

as
es

 a
s 

fr
ac

tio
n 

of
 p

op
ul

at
io

n

Immunity coefficient

1

4

12



Table 2: Summary table of results for the two limiting models where sus-
ceptibility has a gamma distribution with mean 1 and shape parameter α

.

Quantity Uncorrelated
susceptibility

Connectivity

Moment generating
function M(θ)

(
1− θ

α

)−α

Coolness of epidemic
qt = M−1(St)

α(S
−1/α
t − 1)

Effective susceptible
fraction h(S)

S1+1/α

Average susceptibility
⟨ω⟩t in susceptible
individuals at time t

S
1/α
t

Average squared
susceptibility

〈
ω2

〉
t
in

susceptible individuals
at time t

(
1 +

1

α

)
S
1+2/α
t

Transmission function −βS
1+1/α
t It −β

(
1 + 1

α

)
S
1+2/α
t It

dS

dV
−R0S

1+1/α
t −R0S

1+2/α
t

R(S)

R0
S1+1/α S1+2/α

Susceptible fraction at
end of epidemic S∞

S∞ =(
1 +R0

1− S∞
α

)−α
S∞ =(

1 +R0
1− S∞
α/2

)−α/2

Although models with uncorrelated susceptibility and heterogeneous con-
nectivity cannot be distinguished from the trajectory of a single epidemic
wave, these two types of heterogeneity have different practical implications.
The uncorrelated susceptibility model predicts that herd immunity will be
stable until a new variant appears that has a different susceptibility pro-
file. The connectivity model predicts that herd immunity will be only
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transient, and that new waves are likely to arise when the social network
is rewired. If variable connectivity contributes to heterogeneity, imposing
“circuit-breaker” restrictions that disrupt and rewire social networks is likely
to increase the long-term size of the epidemic.
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8 Moment generating functions

The probability density function p(ω) can be expressed in an alternative
form as a moment generating function.

M(θ) =

∫
eθωp(ω)dω (44)

Some properties of the moment generating function are:

� There is a one-to-one mapping between the probability density func-
tion and the moment generating function: inverting the functionM(θ)
recovers the function p(ω).

� M(θ) can take only positive values

� If ω can take only positive values, M(θ) is an increasing function of θ

� M(0) = 1

� the nth moment of the probability distribution of ω can be obtained
as the nth derivative of M(θ) with respect to θ, evaluated at θ = 0.

⟨ωn⟩ = dnM(θ)

dθn

∣∣∣∣
θ=0

(45)
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Table 3: Notation used by other writers

.

This tutorial Tkachenko et al.
[2021]

Montalbán et al.
[2022]

Neipel et al.
[2020]

Force of infection −dqt
dt

J(t) λ τ̇

Susceptibility ω α x x

Average susceptibility
⟨ω⟩t in susceptible
compartment at time t

⟨α⟩ S̄ / S

Effective susceptible
fraction h(S) = St⟨ω⟩t

Se S̄ x̄

Coolness of epidemic qt Z(t) τ

Moment generating
function M(−qt)

Mα(−Z(t)) S(τ)
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