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Mendelian randomization: early hopes
▶ Taubes (1995): Epidemiology faces its limits

▶ Keavney (2000, 2005): Fibrinogen and coronary heart disease:
test of causality by ‘Mendelian randomization’

▶ MRC Integrative Epidemiology Unit (2013): established as “a
leading centre for research into methods for causal inference”.
▶ Hartwig (2016): Two-sample Mendelian randomization: uses

genotype-exposure coefficients and genotype-outcome
coefficients, estimated from different datasets

▶ Bowden (2016): Consistent estimation in Mendelian
randomization with some invalid instruments using a weighted
median estimator.

▶ Hemani (2018): The MR-Base platform supports systematic
causal inference across the human phenome.

▶ 2-sample MR, using MR-Base to compute tests from summary
GWAS statistics, has become the most widely used method.



Growth of articles published 2015-2024
(("MR-Base" OR "MR Base" OR "MRBase" OR "weighted
median") AND "mendelian randomization") OR
TwoSampleMR OR MendelianRandomization
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Sounding the alarm
▶ Munafò, Brown, Hefler, Davey Smith (2024). Managing the

exponential growth of Mendelian randomization studies
we are unfortunately seeing an ever-increasing number of MR
studies that simply use summary GWAS data . . . down to current
incentive structures that reward publication over knowledge . . .
there are now relatively few studies applying MR methods that
report null results.

▶ Stender, Gellert-Kristensen, Davey Smith (2024). Reclaiming
Mendelian randomization from the deluge of papers and
misleading findings
Sadly, MR has run off the rails . . . a powerful and elegant
scientific method for assessing causality in epidemiology is now
being exploited for mass production of low-quality research, and
is also reporting misleading findings . . .

We advise editors to simply reject papers that only report 2SMR
findings, with no additional supporting evidence.



Why is Mendelian randomization analysis generating
false-positive results?

▶ Statistical inference given observed data and a model that
incorporates prior information is a well-posed problem (Jaynes
1973):
▶ unique solution given the inputs: posterior ∝ prior × likelihood
▶ slight perturbation of the inputs will only slightly perturb the

solution
▶ if inputs are uninformative, solution will be uninformative

(rather than false-positive)

With correct methods, mass production of research should not lead
to low-quality output.



Statistical model for 2-sample Mendelian randomization

▶ α vector of coefficients of effects of J unlinked genetic
instruments on exposure X .

▶ β vector of coefficients of direct (pleiotropic) effects of the
instruments on outcome Y , assumed to be independent of α

▶ θ causal effect of X on Y

▶ Crude effect γj of jth instrument on the outcome is the sum of
the direct effect and the causal effect:

γj = βj + θαj

For instruments with no direct effects, plot of the true values for the
coefficients γj against those for αj will give points lying on a
straight line passing through the origin, with gradient θ.



Plot of simulated data, excluding instruments with direct
effects
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Plot including instruments with direct effects
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Inference of the causal effect parameter

▶ Specify a horseshoe prior (equivalent to a spike-and-slab) on
the direct effects βj

▶ Observed coefficient estimates α̂j , γ̂j are modelled as Gaussian
variables with means αj , γj and standard deviations equal to
their standard errors.

▶ Specify weak priors on αj , γj , θ.

▶ Compute the posterior distribution of all parameters using a
probabilistic programming language: JAGS (Grant 2024),
Stan, PyMC, or NumPyro (McKeigue 2024).
▶ Divide the posterior density of the causal effect parameter θ by

the prior on θ to obtain the marginal likelihood of θ.
▶ Fit a quadratic function to the log-likelihood and construct a

classical hypothesis test for θ = 0.



How is causal inference possible without “valid
instruments”?

▶ Pearl 2000 - Structural Causal Model defines graphical
conditions for causal effects to be identifiable.
▶ instrumental variable analysis requires “valid instruments” that

influence the outcome only through the exposure

▶ Rohde Proc Machine Learning Res (2022) - Causal inference is
just inference

▶ With multiple unlinked instruments, information about the
causal effect parameter accumulates as the number of
instruments increases, if the direct instrument-outcome effects
are independent of the instrument-exposure effects,.
▶ Statistical power to detect a causal effect depends upon the

number of (observations) instruments.



Pubmed query for articles published up to October 2024

▶ Query [("MR-Base" OR "MR Base" OR "MRBase" OR
"weighted median") AND "mendelian randomization"]
retrieved 2629 papers

▶ Citation searches identified:
▶ 3174 papers that cited the derivation of the weighted median

estimator (Bowden 2016)
▶ 308 that cited the R package TwoSampleMR (Hartwig 2016)
▶ 59 that cited the R package MendelianRandomization

(Yavorska 2017)
▶ 2695 that cited the paper describing the MR-Base platform

(Hemani 2018).

6311 unique papers remained after merging and deduplicating.



Commonly used statistical tests: sample of 40 articles

▶ 38 papers reported original results

▶ Of 30 papers that reported support for causality, 25 used the
fixed-effect inverse variance weighted test (assumes no direct
effects). For inference in the presence of direct effects:
▶ 27 used weighted median test: calculates standard error of

estimator by a “parametric bootstrap”.
▶ 15 used “outlier-corrected” Pleiotropy RESidual Sum and

Outlier (MR-PRESSO) test.
▶ 4 used Robust Adjusted Profile Score (MR-RAPS) test: profile

likelihood of causal effect parameter is calculated by holding
nuisance parameters (direct effects) at their maximum
likelihood values

▶ 22 used p < 0.05 as a threshold for declaring support for
causality



Simulations from null model: Type 1 error rates

Marginal likelihood

Weighted median with SE from
posterior predictive distribution

Random−effects inverse−variance
weighted

MR−RAPS

MRPRESSO Raw

MRPRESSO Outlier−corrected

Weighted median with SE calculated
as in Bowden 2016

Fixed−effect inverse−variance
weighted

0.001 0.01 0.1 0.5 1
Type 1 error rate (log scale)



Simulations from non-null model: Type 2 error rates

Marginal likelihood

MRPRESSO Raw

Random−effects inverse−variance
weighted

0.00 0.25 0.50 0.75 1.00
Type 2 error rate



Why do some tests yield inflated Type 1 error rates?

▶ Weighted median estimator:
▶ a “parametric bootstrap” is a method for obtaining the sampling

distribution of a test statistic by simulating new observations
from the predictive distribution given the model parameters.

▶ published code simulates not new observations but new
coefficient estimates from the same observations.

▶ incorrect procedure is replicated in R package TwoSampleMR, R
package MendelianRandomization, and the MR-Base
platform.

▶ MR-PRESSO: “outlier-corrected” procedure drops outliers, so
standard error for the causal effect parameter is too small

▶ MR-RAPS: where number of nuisance parameters (direct
effects) equals the number of observations, the profile
likelihood does not behave as a likelihood.

https://github.com/MRCIEU/TwoSampleMR
https://cran.r-project.org/package=MendelianRandomization


Why causal inference should be based on the marginal
likelihood

▶ Frequentist inference relies on constructing “estimators” that
have desirable sampling properties: consistency, minimum
variance and unbiasedness
▶ even a genius can get this wrong: R A Fisher’s “fiducial

inference”

▶ Bayesian inference requires us to specify a model and to
compute the likelihood of the parameter given the model and
the data, marginalizing over nuisance parameters.
▶ all information favouring one value of the parameter over

another is conveyed by the difference in log-likelihoods
▶ in large samples the maximum-likelihood estimate is guaranteed

to have desirable sampling properties.



What if effects of instruments on outcome and direct effects
of instruments on exposure are coupled?

▶ If direct instrument-outcome effects are coupled with
instrument-exposure effects, we cannot infer causality without
controlling this confounding.

▶ This is achievable, but usually requires access to individual-level
data on genotypes and exposures
▶ for instance where exposure is gene transcript levels in whole

blood, a likely confounder is cell type proportions.
▶ can impute cell type proportions, and re-estimate the

genotype-transcript coefficients with adjustment for cell type
proportions

▶ Confounders that couple genetic effects on exposure and
outcome may be of interest in their own right:
▶ in systemic lupus erythematosus and psoriasis, coupling of

effects on expression with effects on disease is recognizable as
an “interferon signature”.



Excluding reverse causation:

▶ Excluding reverse causation also requires individual-level data
on genotypes and exposure

▶ If individual-level data from the dataset used to estimate
genotype-exposure coefficients are available, we can exclude
reverse causation.
▶ for instance to study the effect of obesity on depression we can

construct instruments for obesity in people who are not
depressed, and vice versa.

▶ can establish temporal sequence by estimating
genotype-exposure coefficients before typical age of onset of
disease

▶ Reverse causation is unlikely to explain an apparent causal
effect of exposure on disease if the disease is rare.



Suggested revisions to existing guidelines for 2-sample MR
analysis

▶ At least 20 unlinked genetic instruments are required for
adequate statistical power.

▶ Inference should be based on the likelihood – no need to “pick
a sensible range of methods”

▶ p-value thresholds for declaring evidence of causality should be
more stringent than p < 0.05.

▶ Individual-level data will usually be required to construct scalar
instruments from multiple SNPs, and to exclude confounding or
reverse causation.

▶ Where possible, multiple exposures should be studied so that
pleiotropic effects of genetic instruments can be observed
directly.



Conclusions

▶ Used correctly, 2-sample Mendelian randomization can allow
“systematic causal inference”, even without other supporting
evidence

▶ About 4000 papers since 2015 that reported causality based on
Mendelian randomization have relied on statistical methods
that are likely to generate false-positive results.

▶ Flaws in widely-used scientific methods can be resistant to
correction, especially when resources are concentrated in
centres of research excellence:
▶ Wood et al. Some statistical aspects of the Covid-19 response,

J R Stat Soc Series A, meeting 10 April 2025.


