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Learning objectives

● Measuring performance of a predictor
– Sensitivity, specificity, likelihood ratio, 

– area under ROC curve, test log-likelihood (for a probabilistic predictor)

● Fitting/learning predictive models
– Epidemiological study designs and for learning and evaluating predictors

– Classical statistical models for prediction:linear regression, logistic regression

– Advantages and disadvantages of different approaches for biomarker 
selection and construction of predictors

– Methods for constructing models from high-dimensional data

● Validation and cross-validation
– Why use cross-validation? 

– How to use cross-validation to it to evaluate and compare predictive 
performance of models



  

Measuring performance of a 
predictor

● Sensitivity and specificity
– Likelihood ratio = sensitivity / (1 – specificity)

– Can be estimated from case-control study

● Prior odds x likelihood ratio = posterior odds
– Why tests that are useful in clinical medicine perform badly 

when used for screening low-risk individuals

● ROC curve for a continuous score
– plot sensitivity against (1 – specificity)

Likelihood of model given data

– Deviance = -2 x loge likelihood 



  

● Cohort (prospective): 
– can study multiple outcomes

● Case-control: 
– quicker, greater statistical power for equivalent 

outlay of resources

– if risk factors can be measured retrospectively

● Nested case-control: 
– if you have a cohort with tissue samples stored at 

baseline, and biomarker measurements are 
expensive

Epidemiological study designs 



  

● Classical statistical models for binary outcomes
– Logistic regression

– Linear discriminant function analysis: 
● assumes multivariate gaussian distributions of predictors 

within cases and controls

● Problems of modelling high-dimensional data 
– number of variables >> number of observations

– Overfitting 
● With enough parameters that adapt to the data, model 

will fit the data but fail to predict new data

Fitting/learning predictive models



  

● Dimension reduction
– where many variables are correlated

– principal components analysis is simplest method 

● Regression models with constraint on number of retained 
predictors and shrinkage of effect sizes 
– Forward stepwise regression with stopping rule to limit number of 

variables added to model

– Penalized regression: LASSO, ridge regression

● Non-parametric (kernel-based) methods
– Learn a function (kernel) that evaluates pairwise similarity 

between observations

– Black-box predictor: not interpretable

Methods for high-dimensional data



  

LASSO regression

● Least Absolute (value) Shrinkage and Selection Operator
● Standard regression programs maximize the log-likelihood (probability of data 

given model) as a function of the regression coefficients β

● LASSO regression maximizes the log-likelihood minus Σ | βi | (the sum of the 
absolute values of the regression coefficients) multiplied by a sparsity 
parameter λ 

● With large values of λ, most regression coefficients will go to zero when the 
model is fitted to the data, and those that are retained will be shrunk towards 
zero
– best value of λ is learned by cross-validation against withdrawn observations

– value of λ determines how many variables are retained in the model (non-zero 
coefficients)

● Bayesian interpretation
– LASSO regression is equivalent to specifying a prior belief that large effects are less 

probable than small effects, and that many effects are close to zero 
● double exponential priors on the regression coefficients)  



  

Bayesian interpretation of 
LASSO regression

● LASSO regression is equivalent to 
specifying a prior belief that large effects 
are less probable than small effects, and 
many effects are close to zero 
– Specifically, the LASSO penalty is equivalent 

to double exponential priors on the regression 
coefficients) 

–  λ is a scale parameter that controls the 
strength of the prior: large values force 
regression coefficients towards zero. 



  

LASSO regression and the double 
exponential prior

● Parameter λ specifies 
the strength of the 
prior (penalty for large 
effect sizes)

– learned from data by 
cross-validation



  

How double exponential prior 
encodes sparsity

● Contour plot of 2D 
probability density 
looks like pyramid
– Contour plot of 

gaussian density 
would be 
concentric circles

● Density varies 
inversely with sum 
of absolute values 
of effect 
parameters



  

Why use cross-validation?

Predictive performance must be evaluated on  
data not used to learn the model

● Cross-validation allows you to use all the data 
for both training and testing
– More efficient than a single test-training split

● Can tune learning algorithms for optimal 
prediction
– Number of variables to retain

– Evaluating performance of predictive model



  

Using cross-validation is used to 
evaluate predictive performance

● Split dataset into N equal test folds
– For each test fold, the remaining (N-1)/N fraction is the 

training fold

● Fit model to each training fold, and calculate 
predictor (e.g. probability of disease) for the 
observations in the corresponding test fold

● Evaluate predictive performance by comparing 
observed with predictive status over all test folds
– Area under ROC (uncalibrated prediction)

– test log-likelihood (calibrated)



  

Using cross-validation to learn  number 
of SNPs retained by LASSO regression 



  

N-fold cross-validation
● Partition dataset into N disjoint test folds

● For each test fold, all other observations are the 
corresponding training set

● For each test/training fold
– a model is fitted to the training fold and predictions 

are evaluated on the test fold

– Predictive performance is evaluated by summing 
over all test folds

● For each observation, can compare observed value with 
value predicted from model fitted to the corresponding 
training fold

● Can compute area under ROC curve
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Tumor Marker Utility Grading 
System (Am Soc Clin Oncology 

1996)
● Levels of evidence:- 

– Level I: prospective study specifically designed to 
test marker, or meta-analysis of level II or III 
studies

– Level II: prospective trial in which marker study is 
secondary objective of trial protocol)

– Level III: large retrospective studies

– Levels IV, V: small retrospective studies or pilot 
data



  

Critical reading of a paper on a new 
biomarker-based prediction

● What was the outcome variable, how many biomarkers 
(P), how many individuals (N)

● What methods were used to control overfitting (unless 
P << N)?

● Was performance of biomarker-based prediction 
compared with performance of prediction from clinical 
data only?

● Was predictive performance evaluated on data that 
were not used to learn the model or to preselect 
relevant variables?

● Is the predictor generalizable or interpretable? 



  



  

Relation of molecular pathology to 
stratified medicine and molecular 

epidemiology
● Molecular pathology: 

● using molecular biomarkers to diagnose disease

● Stratified medicine: 
● using (molecular) biomarkers to subtype disease 

and predict therapeutic response

● Molecular epidemiology: 
● using molecular biomarkers to study states of 

health and disease in populations



  

Biomarkers

● Biomarker is any standardized measurement 
that predicts a biological state: disease, disease 
subtype or therapeutic response

● Usually used for in vitro molecular 
measurements of molecules
– imaging measurements are also biomarkers

● Most classic molecular biomarkers are univariate
● “-omic”platforms yield high-dimensional data

– Number of variables >> number of individuals



  

Types of biomarker

● genotypic: SNPs, sequence data
● phenotypic: 

– Somatic DNA: in tumour or cell-free

– gene expression: microarrays, custom RT-PCR kits, 
DNA methylation, micro-RNA

– proteins and glycans

– lipoproteins

– small molecules: lipidomics, metabolomics

– imaging

– time-series clinical measurements



  

Discovering biomarkers – two 
complementary approaches

● (1) Identify candidate biomarkers from basic biology, and 
test them for association with outcome
– Success in cancer: expression of the drug target is a candidate 

biomarker of drug response

● (2) Use -omic platforms to measure many biomarkers 
simultaneously and select those that predict outcome 
jointly or singly
– Requires large sample sizes and methods for high-

dimensional data

● Both approaches require tissue samples stored at 
baseline, and long-term  follow-up
– Electronic health records make follow-up cheaper



  

Statistical methods for molecular 
epidemiology

● Prediction from high-dimensional data
– classical statistical methods fail when number of 

variables >> number of observations

● Learning how to cluster patients into disease 
subtypes, so as to optimize prediction
– “mixtures of experts” model learns “soft” 

classification, in which each patient is may be a 
mixture of different disease subtypes



  

Prediction from high-dimensional 
data

● Dimensionality reduction
– Clusters of correlated biomarkers can be replaced by a few weighted scores that 

contain the same information 

– Only useful where many biomarkers measure the same thing

● Sparsity-enforcing methods
– Learn the optimal number of biomarkers to retain in a predictive model

● Non-parametric methods
– Kernel-based methods learn a function that evaluates the similarity between pairs 

of observations

– Deep learning – a new kind of neural network

– These are “black-box” methods: don't select the most useful biomarkers

Cross-validation (repeated training/test splits) is used to learn the best 
tradeoff between complexity and fit 



  

What is stratified medicine?

● Use of biomarkers + clinical data to stratify patients 
with a given diagnosis so as to select optimal 
treatment for individual patient
– stratification may be on subtype of disease (e.g. cancer,  

rheumatoid arthritis)

– or on factors that are not disease-related but influence 
drug response (e.g. individual variation in drug sensitivity)

– Subtyping disease is more useful than “black box” 
prediction because disease subtype is likely predict 
response to drugs not yet discovered



  

Status of stratified medicine

● Long-established: antibiotic/antiviral sensitivity 
testing

● Adverse drug reactions: HLA-B*5701 allele 
predicts hypersensitivity to abacavir (Mallal 2002): 
– > 90% sensitivity for reaction confirmed by skin patch 

testing

● Cancer – several established applications based 
on gene expression in tumours

● Rheumatoid arthritis – still at research stage



  

Examples: stratification based on 
expression of single gene by tumour

● Many drugs for cancer target tyrosine kinase signalling pathways: 
epidermal growth factor receptor (EGFR), HER2/neu, B-raf, K-ras

● cetuximab: monoclonal antibody against EGFR
– effective in colorectal cancer only if KRAS gene is not mutated (Karapetis 2008)

● trastzumab (herceptin): monoclonal antibody against HER2/neu 
receptor
– effective against breast tumours that express HER2 (but retrospective analysis 

shows benefit in women reclassified as HER2-negative)

● vemurafenib: inhibits B-raf enzyme
– effectiveagainst melanoma only if BRAF gene has V600 mutation

● imatinib: inhibits BCR-ABL tyrosine kinase
– effective in myeloproliferative leukaemia / lymphoma only with PDGFR gene 

rearrangements or Philadelphia chromosome



  

Tumor Marker Utility Grading 
System (Am Soc Clin Oncology 

1996)
● Levels of evidence:- 

– Level I: prospective study specifically designed to 
test marker, or meta-analysis of level II or III 
studies

– Level II: prospective trial in which marker study is 
secondary objective of trial protocol)

– Level III: large retrospective studies

– Levels IV, V: small retrospective studies or pilot 
data



  

Stratification based on multivariate 
gene expression: breast cancer

● 2 assays licensed by FDA
– Oncotype Dx: 21 genes measured by real-time 

polymerase chain reaction (RT-PCR) 

– Mammaprint: 70 genes measured by microarray

● Other commercialized assays: 
– Mammostrat: 5 genes

– Breast Cancer Index: 2 genes 

– BreastOncPx: 14 genes 

– PAM50 Breast Cancer Intrinsic Classifier: 50 
genes



  

Oncotype Dx

● for oestrogen-receptor-positive breast cancer
– assay kit measures 21 genes

– Score validated using archived tumour samples 
from a randomized trial

– predicts recurrence, and may also predict response 
to adjuvant hormonal therapy and chemotherapy

● identifies women who do not need chemo
● Test costs $4000, manufacturer estimates it pays for itself 

but NICE disagrees 



  

Mammaprint

– van t'Veer 2002: 78 patients with breast cancer

– 5000 “significantly regulated” probes selected from 25000 on 
microarray, ranked by correlation with time to recurrence

– clustering procedure

– optimal number of probes to retain determined by leave-one-
out cross-validation

● 70 genes retained

– initially validated against additional 19 patients

– Buyse 2006: validation in 307 patients

– score dichotomized~40/60 split low risk/high-risk 

– hazard ratio ~ 2.1 for metastases after adjusting for clin/path 
risk classification

– Scoring algorithm is not published



  

Some questions about multivariate 
scores

● Does it matter that the genes used in different 
scores do not overlap much?  
– there may be an underlying structure (e.g. patients 

clustered into two disease subtypes) for which many 
different scoring systems are good enough to classify 
patients

● If underlying score is continuous users should not 
be given just a dichotomous classification

● Are these scores “inventions” and how far do IP 
rights extend? 



  

Regulatory efforts for in vitro 
diagnostics

● FDA 2007: univariate “laboratory-developed tests” are 
subject to  “enforcement discretion”
– FDA enforces lab quality, but leaves interpretation to the clinician

● In vitro diagnostic “multivariate index” assays are not 
transparent to the clinician and should be regulated by FDA.  
– draft guidelines: prospective studies ideal, but retrospective studies 

using archived samples may sometimes be used

● FDA 2010: draft guidelines for multivariate index assays 
withdrawn 
– FDA to focus on broader framework for regulating “laboratory-

developed tests”, including direct-to-consumer genetic testing



  

Economics of stratified medicine

● Value-based pricing now being introduced in the UK
– National Institute for Clinical Excellence negotiates drug price 

based on the cost per quality-adjusted life-year (QALY) gained

● Number of patients treated with a given drug may fall but the 
value added per patient should rise
– pricing per dose is economically inefficient

– marginal cost of extra dose is low, but each dose is priced to 
recover development costs

● Alternatives to pricing per dose:- 
– site licensing at national or international level for unlimited use, 

paid for by governments

– private sector competition for direct government funding of drug 
development costs, with no patent rights 



  

The future of molecular pathology 
and stratified medicine

● Genome-wide genotypic profiles and high-dimensional phenotypic 
biomarker profiles will be collected routinely in clinical practice
– Not just one-off snapshots, but time-series data will be available

● Linkage of these biomarker data to electronic health records, with 
individual consent, will allow models to be developed for risk 
prediction and disease subtyping

● Single-biomarker diagnostics will be supplanted by multivariate 
diagnostics
– Risk prediction and disease subtyping will rely on machines: too much 

data for humans to interpret

● Regulating these multivariate in vitro diagnostics will be a 
challenge.  
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