Statistical modelling of risk factors for hypoglycemic attacks

Paul McKeigue

Molecular, Genetic and Population Health Sciences University of Edinburgh

Hypoglycaemic events: modelling risk factors and prediction

- Aims
 - Examining risk factors for severe hypoglycaemia
- Objectives
 - Determine the relative contribution of known predictors of hypoglycaemia with greater precision
 - Identify new risk factors which can predict future episodes or are amenable to intervention

- All available trials in which hypoglycaemia events are recorded appropriately
- Studies can be analysed jointly or separately, depending on data availability and level of harmonisation possible.
- Harmonized dataset curated on Hypo-RESOLVE server (WP3)

Eligibility and end points

- Inclusion/exclusion criteria: diagnosed with Type 1 or Type 2 Diabetes
- Entry times: point of entry into study
- Exit times: end of trial, end of follow-up or death
- Outcome: hypoglycaemia events, defined as
 - Major, minor, symptoms only
 - Score of hypoglycaemia based on intensity and duration

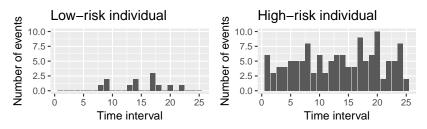
Selection of covariates will be informed by systematic review

- 2 sets of covariates:
 - Variables previously reported in the literature
 - New hypothesised variables
- Missing data
 - Multiple imputations up to 20% missingness threshold

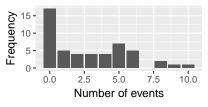
Hypoglycaemic events: modelling risk factors and prediction

- Hypoglycaemic events occur repeatedly within each patient
 - To model time-updated covariates, data must be split into person-time intervals
 - Counts of events in each person-time interval are usually small with many zero values
 - cannot be approximated by a Gaussian (normal) distribution
 - Hazard rates vary between individuals

Distribution of counts of events based on pooling person-time intervals over individuals



Frequencies over pooled person-time intervals



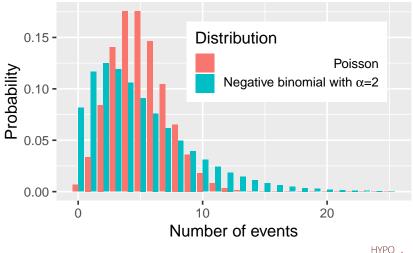
Standard modelling approach: negative binomial regression

- Pooling person-time intervals from individuals with different hazard rates gives a distribution of counts of events that is overdispersed: variance > mean
 - Poisson distribution has variance equal to its mean
- Negative binomial distribution is a convenient way to model an overdispersed distribution of counts of events:
 - parameterized with mean λ and and dispersion parameter α
 - variance is $\lambda \frac{\lambda + \alpha}{\alpha}$
 - equivalent to a mixture of Poisson distributions where the hazard rates are drawn from a gamma distribution with shape parameter α .
- Counts in *i*th person-time interval modelled as

 $y_i \sim \text{Negative Binomial}(\lambda_i, \alpha)$

 $\log \lambda_i = \beta_0 + \beta_1 x_{1i} + \dots$

Comparison of Poisson and negative binomial distributions with mean $\boldsymbol{5}$



Limitations of negative binomial model

- Negative binomial regression ignores information about which person-time intervals are repeat observations on the same individuals.
- Negative binomial regression assumes that the dispersion parameter is constant across person-time intervals given covariates (Luo and Qu, 2013), even where these person-time intervals are contributed by different persons.
- Regression coefficients are log ratios of population mean event rates between strata, not interpretable as log hazard rate ratios conditional on baseline risk.

A simulation study of negative binomial regression for modelling event rates in a sample of individuals who vary in susceptibility

- Simulated 1000 samples each of 200 individuals from the following model:
 - log baseline hazard rates distributed as normal with mean zero and standard deviation 2
 - two covariates distributed as standard normal with regression coefficients -0.5, 0.
 - Events in each person-time interval distributed as Poisson with log hazard rate given by linear predictor
 - Average 11 person-time intervals observed per individual
- Results of fitting a negative binomial regression model:
 - algorithm failed to converge in 6% of draws
 - $p\mbox{-value}$ for effect of covariate with zero true effect was <0.01 in 62% of draws.

Statistical methods for modelling hypoglycemia as outcome in Hypo-RESOLVE

- To model repeat observations of a continuous variable on the same individuals, we need to specify the variation between individuals as **random effects**.
- Effects of covariates in a regression model are fixed effects
- A mixed model has fixed effects for the covariates, random effects for individuals.

Methods for fitting a mixed model with Poisson likelihood

- Where the outcome is a continuous variable, we can specify a linear mixed model: easy to fit.
- Where the outcome is counts of events, we have to specify a **generalized** linear mixed model.
 - there is no exact method to calculate the integral that averages over the random effects.
- Methods for fitting a generalized linear mixed model, proposed in the Hypo-RESOLVE statistical analysis plan:
 - Approximate the integral over the random effects and maximize the likelihood of the fixed-effect parameters: implemented in the R package lmer4: fails with real data.
 - Bayesian approach: sample the posterior distribution of the regression coefficients: infeasible until recent development of efficient algorithms.

Stan: a platform for Bayesan inference and imputation: Gelman, Lee and Guo (2015)

- Stan uses a *Hamiltonian Monte Carlo* algorithm (Duane, Kennedy, Pendleton & Roweth 1987) - to sample the posterior distribution given the data and the model
 - Hamiltonian Monte Carlo updates all parameters jointly: algorithms implemented in BUGS (1996) and JAGS (2007) can sample only one parameter at a time
 - Programs PyMC3 and pyro implement the same sampling algorithm

Stan or William?

Stan Ulam (Poland / USA, 1909-84)

- Markov chain Monte Carlo sampling algorithm
- Method of initiating a hydrogen bomb

William Rowan Hamilton (Ireland, 1805-65)

• Hamiltonian dynamics, variational principle of least action, quaternions

Scottish Diabetes Research Network Type 1 Bioresource

- 6084 people clinically diagnosed as Type 1 diabetes or latent autoimmune diabetes of adulthood aged over 16 years at recruitment.
- C-peptide and autoantibodies measured at clinic visit

Follow-up for average 5.2 years through health records: clinic measurements including HbA1c and body mass index, hospital admissions

Distribution of age at onset and duration

	Duration	0 to	5 to	15 to	25 to	35 -
		<5	<15	<25	<35	
Age at						
onset						
0 to ${<}15$		14	362	563	529	613
15 to ${<}25$		174	342	364	369	299
25 to ${<}35$		168	338	351	265	128
35 -		272	491	298	118	26

Frequency of hypoglycaemic episodes requiring hospital admission in 120-day person-time intervals

97035
51000
284
101
24
4
6
1
2
1

Overdispersion: variance is 2.2 \times mean

Logistic regression of >= 1 hypoglycemic episode during follow-up on baseline covariates

	Odds ratio	p-value
Intercept	0.03	8e-11
Gender	0.77	0.04
Age at diagnosis	1.02	1e-05
Duration (years)	1.03	3e-10
BMI (kg m ⁻²)	0.95	1e-04
HbA1c (mmol/mol)	1.02	1e-07
C-peptide 5 to <30	0.74	0.1
C-peptide 30 to	0.55	0.008
<200		
C-peptide 200-	0.59	0.03

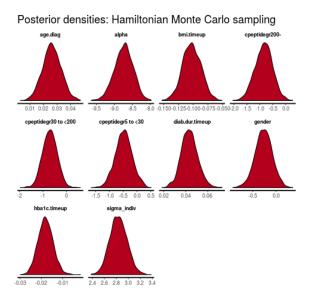
Risk factors for >=1 hypoglycemic episode requiring hospital admission

- Baseline covariates associated with increased risk of hypoglycemia at follow-up:
 - Later age at diagnosis
 - Longer duration
 - Higher HbA1c
 - Lower body mass index
 - Absent / low residual C-peptide secretion
- Logistic regression is valid, but wastes information by ignoring length of follow-up and multiple hypoglycemic episodes.
- Cannot model effects of time-varying covariates with this approach.

Negative binomial regression of number of hypoglycemic episodes on time-updated covariates

	Ratio of means	p-value
Intercept	0.01	2e-18
Gender	0.96	0.7
Age at diagnosis	1.02	7e-04
*Duration (years)	1.03	6e-09
*BMI (kg m ⁻²)	0.92	2e-08
*HbA1c	1.01	0.002
(mmol/mol)		
C-peptide 5 to <30	0.78	0.2
C-peptide 30 to	0.64	0.04
<200		
C-peptide 200-	0.72	0.1

Determinants of hypoglycemic episodes: Bayesian generalized linear regression



Maximum likelihood estimate and p-value calculated from the posterior density

	Hazard ratio	p-value
Gender	0.75	0.1
Age at diagnosis	1.03	5e-05
*Duration (years)	1.05	6e-09
*BMI (kg m⁻²)	0.9	1e-11
*HbA1c	0.98	1e-05
(mmol/mol)		
C-peptide 5 to <30	0.59	0.08
C-peptide 30 to	0.5	0.05
<200		
C-peptide 200-	0.42	0.009

• time-updated covariates

Conclusions (1) - effect of residual C-peptide secretion on rates of serious hypoglycemic episodes

- Even very low levels of residual C-peptide secretion (< 30 pmol/l) are enough to reduce the rate of serious hypoglycemic episodes by about 40%.
- This supports use of C-peptide levels as a surrogate end-point in trials of therapy to slow / reverse progression of Type 1 diabetes

Conclusions (2) - statistical methods

- The standard statistical method negative binomial regression
 for modelling rates of severe hypoglycemia in clinical trials and observational studies should no longer be used.
 - ignores information about which observations are on the same individual
 - gives seriously misleading results on simulated data
- New tools for statistical computation make it possible to fit a mixed model with Poisson likelihood even to large and complex datasets.
 - outputs are Bayesian posterior distributions of the parameters of interest
 - classical estimates and *p*-values can easily be obtained where readers or regulatory agencies require them.

