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Hypoglycaemic events: modelling risk factors and
prediction

• Aims
• Examining risk factors for severe hypoglycaemia

• Objectives
• Determine the relative contribution of known predictors of
hypoglycaemia with greater precision

• Identify new risk factors which can predict future episodes or
are amenable to intervention



Data sources

• All available trials in which hypoglycaemia events are recorded
appropriately

• Studies can be analysed jointly or separately, depending on
data availability and level of harmonisation possible.

• Harmonized dataset curated on Hypo-RESOLVE server (WP3)



Eligibility and end points

• Inclusion/exclusion criteria: diagnosed with Type 1 or Type 2
Diabetes

• Entry times: point of entry into study
• Exit times: end of trial, end of follow-up or death
• Outcome: hypoglycaemia events, defined as

• Major, minor, symptoms only
• Score of hypoglycaemia based on intensity and duration



Covariates to be modelled

Selection of covariates will be informed by systematic review

• 2 sets of covariates:
• Variables previously reported in the literature
• New hypothesised variables

• Missing data
• Multiple imputations up to 20% missingness threshold



Hypoglycaemic events: modelling risk factors and
prediction

• Hypoglycaemic events occur repeatedly within each patient

• To model time-updated covariates, data must be split into
person-time intervals

• Counts of events in each person-time interval are usually small
with many zero values

• cannot be approximated by a Gaussian (normal) distribution

• Hazard rates vary between individuals



Distribution of counts of events based on pooling
person-time intervals over individuals

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20 25

Time interval

N
um

be
r 

of
 e

ve
nt

s Low−risk individual

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20 25

Time interval

N
um

be
r 

of
 e

ve
nt

s High−risk individual

0

5

10

15

0.0 2.5 5.0 7.5 10.0

Number of events

F
re

qu
en

cy

Frequencies over pooled person−time intervals



Standard modelling approach: negative binomial regression

• Pooling person-time intervals from individuals with different
hazard rates gives a distribution of counts of events that is
overdispersed: variance > mean

• Poisson distribution has variance equal to its mean
• Negative binomial distribution is a convenient way to model an
overdispersed distribution of counts of events:

• parameterized with mean λ and and dispersion parameter α
• variance is λλ+α

α
• equivalent to a mixture of Poisson distributions where the
hazard rates are drawn from a gamma distribution with shape
parameter α.

• Counts in ith person-time interval modelled as

yi ∼ Negative Binomial (λi , α)

log λi = β0 + β1x1i + . . .

.



Comparison of Poisson and negative binomial distributions
with mean 5
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Limitations of negative binomial model

• Negative binomial regression ignores information about which
person-time intervals are repeat observations on the same
individuals.

• Negative binomial regression assumes that the dispersion
parameter is constant across person-time intervals given
covariates (Luo and Qu, 2013), even where these person-time
intervals are contributed by different persons.

• Regression coefficients are log ratios of population mean event
rates between strata, not interpretable as log hazard rate ratios
conditional on baseline risk.

https://onlinelibrary-wiley-com.ezproxy.is.ed.ac.uk/doi/full/10.1002/pst.1576


A simulation study of negative binomial regression for
modelling event rates in a sample of individuals who vary
in susceptibility

• Simulated 1000 samples each of 200 individuals from the
following model:

• log baseline hazard rates distributed as normal with mean zero
and standard deviation 2

• two covariates distributed as standard normal with regression
coefficients -0.5, 0.

• Events in each person-time interval distributed as Poisson with
log hazard rate given by linear predictor

• Average 11 person-time intervals observed per individual

• Results of fitting a negative binomial regression model:
• algorithm failed to converge in 6% of draws
• p-value for effect of covariate with zero true effect was < 0.01
in 62% of draws.



Statistical methods for modelling hypoglycemia as
outcome in Hypo-RESOLVE

• To model repeat observations of a continuous variable on the
same individuals, we need to specify the variation between
individuals as random effects.

• Effects of covariates in a regression model are fixed effects
• A mixed model has fixed effects for the covariates, random
effects for individuals.



Methods for fitting a mixed model with Poisson likelihood

• Where the outcome is a continuous variable, we can specify a
linear mixed model: easy to fit.

• Where the outcome is counts of events, we have to specify a
generalized linear mixed model.

• there is no exact method to calculate the integral that averages
over the random effects.

• Methods for fitting a generalized linear mixed model, proposed
in the Hypo-RESOLVE statistical analysis plan:

• Approximate the integral over the random effects and maximize
the likelihood of the fixed-effect parameters: implemented in the
R package lmer4: fails with real data.

• Bayesian approach: sample the posterior distribution of the
regression coefficients: infeasible until recent development of
efficient algorithms.



Stan: a platform for Bayesan inference and imputation:
Gelman, Lee and Guo (2015)

• Stan uses a Hamiltonian Monte Carlo algorithm (Duane,
Kennedy, Pendleton & Roweth 1987) - to sample the posterior
distribution given the data and the model

• Hamiltonian Monte Carlo updates all parameters jointly:
algorithms implemented in BUGS (1996) and JAGS (2007) can
sample only one parameter at a time

• Programs PyMC3 and pyro implement the same sampling
algorithm



Stan or William?

Stan Ulam (Poland / USA,
1909-84)

• Markov chain Monte Carlo
sampling algorithm

• Method of initiating a
hydrogen bomb

William Rowan Hamilton (Ireland,
1805-65)

• Hamiltonian dynamics,
variational principle of least
action, quaternions



Scottish Diabetes Research Network Type 1 Bioresource

• 6084 people clinically diagnosed as Type 1 diabetes or latent
autoimmune diabetes of adulthood aged over 16 years at
recruitment.

• C-peptide and autoantibodies measured at clinic visit

Follow-up for average 5.2 years through health records: clinic
measurements including HbA1c and body mass index, hospital
admissions



Distribution of age at onset and duration

Duration 0 to
<5

5 to
<15

15 to
<25

25 to
<35

35 -

Age at
onset
0 to <15 14 362 563 529 613
15 to <25 174 342 364 369 299
25 to <35 168 338 351 265 128
35 - 272 491 298 118 26



Frequency of hypoglycaemic episodes requiring hospital
admission in 120-day person-time intervals

Number of events Frequency

0 97035
1 284
2 101
3 24
4 4
5 6
6 1
9 2
10 1

Overdispersion: variance is 2.2 × mean



Logistic regression of >= 1 hypoglycemic episode during
follow-up on baseline covariates

Odds ratio p-value

Intercept 0.03 8e-11
Gender 0.77 0.04

Age at diagnosis 1.02 1e-05
Duration (years) 1.03 3e-10
BMI (kg m-2) 0.95 1e-04

HbA1c (mmol/mol) 1.02 1e-07
C-peptide 5 to <30 0.74 0.1
C-peptide 30 to

<200
0.55 0.008

C-peptide 200- 0.59 0.03



Risk factors for >=1 hypoglycemic episode requiring
hospital admission

• Baseline covariates associated with increased risk of
hypoglycemia at follow-up:

• Later age at diagnosis
• Longer duration
• Higher HbA1c
• Lower body mass index
• Absent / low residual C-peptide secretion

• Logistic regression is valid, but wastes information by ignoring
length of follow-up and multiple hypoglycemic episodes.

• Cannot model effects of time-varying covariates with this
approach.



Negative binomial regression of number of hypoglycemic
episodes on time-updated covariates

Ratio of means p-value

Intercept 0.01 2e-18
Gender 0.96 0.7

Age at diagnosis 1.02 7e-04
*Duration (years) 1.03 6e-09
*BMI (kg m-2) 0.92 2e-08

*HbA1c
(mmol/mol)

1.01 0.002

C-peptide 5 to <30 0.78 0.2
C-peptide 30 to

<200
0.64 0.04

C-peptide 200- 0.72 0.1



Determinants of hypoglycemic episodes: Bayesian
generalized linear regression



Maximum likelihood estimate and p-value calculated from
the posterior density

Hazard ratio p-value

Gender 0.75 0.1
Age at diagnosis 1.03 5e-05
*Duration (years) 1.05 6e-09
*BMI (kg m-2) 0.9 1e-11

*HbA1c
(mmol/mol)

0.98 1e-05

C-peptide 5 to <30 0.59 0.08
C-peptide 30 to

<200
0.5 0.05

C-peptide 200- 0.42 0.009

• time-updated covariates



Conclusions (1) - effect of residual C-peptide secretion on
rates of serious hypoglycemic episodes

• Even very low levels of residual C-peptide secretion (< 30
pmol/l) are enough to reduce the rate of serious hypoglycemic
episodes by about 40%.

• This supports use of C-peptide levels as a surrogate end-point
in trials of therapy to slow / reverse progression of Type 1
diabetes



Conclusions (2) - statistical methods

• The standard statistical method – negative binomial regression
– for modelling rates of severe hypoglycemia in clinical trials
and observational studies should no longer be used.

• ignores information about which observations are on the same
individual

• gives seriously misleading results on simulated data

• New tools for statistical computation make it possible to fit a
mixed model with Poisson likelihood even to large and complex
datasets.

• outputs are Bayesian posterior distributions of the parameters of
interest

• classical estimates and p-values can easily be obtained where
readers or regulatory agencies require them.


