
  

Bayesian graphical modelling in genetic 
epidemiology

● Causal inference: classical and Bayesian 
approaches

● Exploiting genotypes as instrumental variables: 
Mendelian randomization

● Limits to Mendelian randomization
● More general methods for reverse-engineering 

genotype-phenotype relationships
– Sparse Bayesian instrumental variable analysis



  

Practical exercises

● Basic principles of Bayesian hypothesis testing
● Using VIBES (variational Bayes package) to 

evaluate the evidence for different models
● Using JAGS (Markov chain Monte Carlo 

package) for instrumental variable analysis with 
genetic instruments

● Using SPIV (sparse Bayesian instrumental 
variable package) with genome-wide data to 
infer causal relationships between biomarkers 
and outcome



  

Using genetic variation to infer causal 
biomarker-disease associations

Bayesian instrumental variable analysis

● “-omic” epidemiology yields many phenotypic 
biomarkers that predict outome

– metabolic measurements, gene expression 
levels, serum proteins

● We want to infer which biomarker-disease 
associations are causal

– possible therapeutic targets

– as surrogate end-points in early-stage clinical 
trials



  

Using genetic variation to infer causality in 
phenotypic biomarker-disease associations

● Genotypes are randomized at meiosis
– if population stratification is controlled, 

associations with phenotype are unconfounded 
except by short-range allelic associations

● Can we exploit genotypic effects on phenotypic 
biomarkers to infer causal relationships 
between biomarkers and outcome?

– infer mechanisms of genotypic effects

– predict therapeutic or adverse effect of 
intervention on a pathway of interest

– validate surrogate end-points for clinical trials



  

Classical approaches to causal inference

● Experimentalists: causal relationships can be 
inferred only from randomized intervention

● Structural causal model (Pearl): causation can 
be inferred if one of three conditions holds

– an instrumental variable has been measured 
(randomization is a special case)

– all confounders have been measured (back-door 
criterion)

– an unconfounded variable on the causal pathway 
has been measured (front-door criterion)



  

Directed acyclic graphs

● nodes connected to each other by directed 
edges, with no cycles

● When the edges define probabilistic 
dependencies, a DAG is a Bayesian network

● Markov blanket of a node consists of the 
“parents” and “children” of that node 

● Inference methods for Bayesian networks are 
not necessarily Bayesian

– updating of nodes uses Bayes theorem



  

Conditional independence in graphs

● Markov property:  
p(x, y, z) = p(z) p(x | z) p(y | x)

● p(y | x, z) = p(y | x) 

● we say that y is conditionally independent of z given x

● but y and z are dependent

z x yz x y



  

More on conditional dependencies in graphs 

● What are the conditional dependencies in these 
graphs?

z x

y

z x

y



  

Graphical definition of a confounder

● Confounder of association between x and y is 
any variable on a pathway from which 
information flows to x and y

● information flow is defined by introducing a do-
operator (equivalent to a latent instrumental 
variable z) 

– Information cannot flow backwards in time

z x y

c



  

Inferring causation from conditional 
independence in graphs

● Causal 
relationship: y 
depends on z

 
● Confounding: 

no information 
flow between z 
and y

z x y

z x y

c



  

Comparison of classical and Bayesian 
inference

● For inference about a model parameter, usually 
not much difference

– Classical maximum likelihood estimates and 
confidence intervals are asymptotically equivalent 
to posterior modes and intervals

● For hypothesis testing (model comparison), 
Bayesian framework differs radically from 
classical methods

– classical p-value evaluates null hypothesis (β=β
0
) 

against a diffuse alternative

– Bayesian test compares likelihood 
P(data | model) of alternative models



  

Comparison of Bayesian and classical 
inference about a parameter

● Classical approach: construct an “estimator” 
whose sampling distribution over repeated 
experiments can be calculated

– asymptotic properties of maximum likelihood 
estimators

● Bayesian approach: compute the likelihood, 
and posterior density

– with uninformative priors, likelihood and posterior 
are same

– nothing is estimated, so we don't care about 
biased estimates



  

Bayesian hypothesis testing 
● Prior odds: P(H

1
) / P(H

0
)

● Likelihood of hypothesis H given data Y: P(Y | H)

● Likelihood of a model with adjustable parameters is the 
marginal likelihood  or evidence: 

– P(Y | H) =  ∫ P(Y | θ ) P(θ | H) dθ

– likelihood of parameters P(Y | θ ), averaged over prior P(θ 
| H)

– Likelihood ratio (Bayes factor): P(Y | H
1
) / P(Y | H

0
)

● Posterior odds P(H
1 
| Y) / P(H

0 
| Y) = prior odds × Bayes factor

– log posterior odds = log prior odds + log Bayes factor
● log Bayes factor (lod score) is the weight of evidence favouring  

H
1
 over H

0



  

Classical and Bayesian approaches to 
testing a null hypothesis against an 

alternative
● Classical p-value is calculated from difference 

between log-likelihood at the null and and log-
likelihood at the maximum of the parameter. 

– evaluates null hypothesis against a diffuse 
alternative 

● log Bayes factor is calculated from the 
difference between log-likelihoods of the null 
and the alternative hypotheses

– alternative hypothesis must specify priors on 
parameters



  

Axiomatic basis for Bayesian hypothesis 
testing

● Cox axioms: degrees of belief must obey rules 
of probability if they satisfy simple criteria of 
logical consistency

● Bayesian inference uses rules of probability to 
revise degrees of belief given data

● Bayes theorem Implies likelihood principle
– ratio of likelihoods contains all information in the 

data about the support for one hypothesis over 
another, or for one parameter value over another 



  

Cox axioms
● Degrees of belief B can be ordered: 

– if B(x) > B(y) and B(y) > B(z), then B(x) > B(z)

● The degree of belief in a proposition x is related 
to the degree of belief in the negation of that 
proposition

B(x) = f [ B(not x) ]
● The degree of belief in the joint proposition (x 

and y) is related to the degree of belief in the 
conditional proposition (x given y) and the 
proposition y

– B(x and y) = f [ B(x | y), B(y) ]



  

Some other axiomatic bases for Bayesian 
inference

To update betting odds, strategy based on 
Bayesian inference will always win against any 
other strategy

● de Finetti's representation theorem
– if 0-1 observations are exchangeable, it is as if 

they are independent samples from a Bernoulli 
distribution with a prior on the probability 
parameter

– extensions: prior on circular errors

– principle of maximum entropy



  

Interpretation of Bayesian hypothesis testing

● Evidence is quantified by ability of model (with 
priors on any adjustable parameters) to predict 
the data

– Penalizes implausibly large effects in 
underpowered studies

– Penalizes unnecessary complexity: model with 
highest marginal likelihood will be the simplest 
explanation that fits the data

● Validity does not depend on large sample 
approximations, or on having fewer variables 
than observations



  

How Bayes factor penalizes implausibly 
large effects in underpowered studies



  

Bayesian interpretation of p-values

● Given a positive result in a diagnostic test
likelihood ratio = sensitivity / (1 – specificity)

● Significance test can be viewed as a diagnostic test: 

– threshold p-value = 1 – specificity

– power for effect of plausible size = sensitivity

– Likelihood ratio = power / threshold p-value
● p-values are misleading if study is underpowered to 

detect effects of plausible size



  

How marginal likelihood penalizes 
“complexity” (large prior hypothesis space)

● Occam factor = width of prior  / width of posterior

● Likelihood of H
1
 = best-fit likelihood x Occam factor



  

How Bayesian hypothesis testing favours 
the simplest explanation that fits the data: 

Mackay 2003

● How many boxes 
are behind the tree? 



  

Two hypotheses: what is the likelihood ratio?

● H1: there is one box behind tree
– 4 free parameters:  3 for coordinates of top and 

sides of box, 1 for colour of box

● H2: there are two boxes behind tree
– 8  free parameters: 4 for each box

● Probability model for observations
– x and y coordinates have 20 distinguishable 

values

– tree is 3 units wide

– box colour has 16 distinguishable values



  

Likelihood equivalence

● Likelihood equivalence of two hypotheses 
– given any setting of parameters of model H1, can 

find a setting of parameters of model H0 such 
that both models have same likelihood P(data | 
H) for all possible datasets

● Heckerman: priors should be set to ensure 
likelihood equivalence for models that have 
equivalent conditional dependencies

● Strict Bayesian argument: priors should 
describe beliefs.   

– models that are likelihood-equivalent may have 
different marginal likelihoods (evidence values) 



  

Example: evidence even though causal 
effects are not identifiable (Mackay 2003)

● 2 binary variables A and B

– H
1
 (A causes B): 3 parameters P(A=1), P(B | 

A=0),  P(B | A=1 ) have flat priors on 0, 1)

– H
2
 (B causes A): 3 parameters P(B=1), P(A | 

B=0),  P(A | B=1 ) have flat priors on 0, 1)

– Bayes factor P (H
1
 ) /  P(H

2
) is 3.8

B=0 B=1

A=0 760 190

A=1 5 45



  

Exercise: calculate the likelihood ratio for 
hypothesis that A causes B, over hypothesis 

that B causes A
Given a uniform prior on the probability of 
success, the probability of r successes in n 
trials is

r !  (n – r) !  / (n + 1) ! 

– special case of the Beta-binomial likelihood



  

Why does the evidence favour H1 over H2?

● Under H1, the maximum likelihood values of 
the probabilities are 0.95, 0.8, 0.1

● Under H2, the maximum likelihood values of 
the probabilities are 0.24, 0.008, 0.19



  

How does imposing a flat prior on probability 
of success encode extra information? 

● Conjugate prior can be interpreted as “prior 
sample size”

● Principle of maximum entropy: given what you 
know, choose the prior that maximizes 
uncertainty (entropy)

– otherwise you are encoding information that you 
don't have

● logistic regression model for dependence of B 
on A has maximal entropy given that model 
averages equate to data averages



  

Another example: strong associations favour 
 causation over confounding

● Causal 
relationship: y 
depends on z
 

● Confounding: 
no information 
flow between z 
and y

x y

x y

c

α

γβ

For parameters to have same 
likelihood in both models, α = β γ



  

Classical epidemiological approach to 
inferring causation from an exposure-

disease association
●  Measure all likely confounders: factors that are 

independently associated with outcome
● Test whether exposure-disease association 

persists after adjusting for these confounders
● Control of confounding is likely to fail with 

biomarkers because the likely confounders are 
unknown or difficult to measure

– for instance raised cytokine levels predict age-
related cognitive impairment – but are affected by 
underlying disease processes 



  

Smoking and lung cancer debate in 1950s
● Classical statisticians' argument: 

– any inference of causation from observational 
data is unreliable

– how do you know that all relevant confounders 
have been measured? 

● Epidemiologists' argument
– even without experimental confirmation, evidence 

from observational studies can strongly favour 
causation



  

Bradford Hill criteria: how to infer causation 
where classical criteria are not met

● Strength of association
● Temporal sequence
● Consistency
● Biological plausibility
● Coherence
● Specificity in the causes
● Dose-response relationship
● Experimental evidence
● Analogy



  

Bayesian interpretation of Bradford Hill 
criteria

● Strength of association: priors imply 
confounding effects are rarely strong

● Consistency and coherence: prior expectation 
that confounding effects will not be consistent

● Dose-response relationship: fits simple 
hypothesis of linear trend 

● Specificity in causes: prior hypothesis space is 
small

● Biologic plausibility: high prior odds for causal 
relationship



  

Control of confounding: epidemiology faces 
its limits

● Standard methods for control of confounding in 
epidemiological studies are likely to fail if the 
exposure under study is:-

● A biomarker: e.g. an inflammatory marker
– Association with outcome may be confounded by 

unknown metabolic/physiologic factors

● A health-seeking behaviour: e.g. use of vitamin 
E supplements, post-menopausal oestrogen

– Association with outcome may be confounded by 
other health-seeking behaviours

●



  

Why does control of confounding fail for 
“endogenous” variables?

● Biomarkers: 
– confounders are unknown

– Temporal sequence from exposure to outcome is 
difficult to establish: reverse causation is possible

● Behavioural factors
– confounding is likely to be strong for a 

disease/outcome where risk can be modified by 
“lifestyle” factors

– Measurement of exposure is often biased



  

Some failures in observational 
epidemiology

● Increased beta-carotene intake associated with 
lower risk of lung cancer (Peto et al. 1981, 
Willett 1990) 

– vitamin supplements advocated (Willett 2001)

– RCTs of beta-carotene supplementation (1994) 
found no such evidence.

● Beta-carotene, vitamin E supplements, & 
hormone replacement therapy all predict lower 
risk of cardiovascular disease 

– all failed to be confirmed in RCTs.



  

 Bayesian computation
● to learn parameters when you can specify the 

model
– use Markov chain Monte Carlo (MCMC) 

simulation to sample the posterior density of 
model parameters

– software (BUGS / JAGS) is available

● to learn which model is supported by the data
– use approximate methods to compare model 

likelihoods

– approximate the posterior by the mode (Laplace 
approximation), by a separable distribution 
(variational Bayes) or by gaussians (expectation 
propagation)



  

 Bayesian approach to statistical models that 
have the form of a directed acyclic graph

● Specify full probability model: priors on all 
variables that have no “parents” in the graph

– Can specify uninformative (“diffuse”) priors. With 
large samples and strong effects, priors have little 
influence on results

● Generate samples from the posterior 
distribution of unobserved variables using  
MCMC simulation

– general-purpose software – BUGS, JAGS 

– Likelihood function of parameter  obtained by 
weighting posterior samples of  by inverse of 
prior density



  

Methods for evaluating the marginal 
likelihood of a model with adjustable 

parameters
● Averaging the likelihood over the prior 

distribution by quadrature is analogous to 
measuring volume of a lake by taking 
soundings

● surface may be high-dimensional, most of the 
volume may be in deep canyons

● Exact marginalization is possible only for 
special cases where the integrals are tractable

– all gaussian or all discrete

– no missing data or latent variables



  

Possible alternatives to evaluating  marginal 
likelihoods: evaluate the ratio

To compare two models, we may be able to 
define a continuous parameter that includes 
both models as special cases

● e.g. define parameter θ as ratio of causal to 
crude (causal + confounding) effects

● Set any convenient prior on θ, then generate 
the posterior density

● Divide posterior by prior to get relative 
likelihood surface, and evaluate ratio of 
likelihoods at θ = 1 and θ = 0 



  

Approximate methods for learning graphical 
models or computing marginal likelihood

● Laplace approximation
– find the posterior mode of the parameters, then 

compute best-fit likelihood and the 2nd-derivative 
of the log posterior

– Bayesian information criterion is a crude 
approximation to this

● Alpha-divergence methods
– Variational Bayes: more accurate than Laplace 

approximation but not always tractable

– Expectation-propagation: similar to variational 
Bayes, tractable but may fail to converge. 



  

Software tools for Bayesian inference

● BUGS and JAGS: specify model in a script, 
then use Markov chain Monte Carlo to generate 
posterior samples

● VIBES: specify your model in a graph, then use 
variational Bayes: teaching tool only. 

● INFER.NET: has capabilities of both BUGS and 
VIBES.  Specify model in C# script

● SPIV: can learn sparse instrumental variable 
model given data with many genotype and 
biomarker variables



  

Instrumental variable analysis

● Identify an “instrument” that perturbs the 
exposure of interest (usually a biomarker or 
behavioural factor) 

● Assumptions:- 
– Effect of instrument on outcome is 

unconfounded

– Any effect of instrument on outcome is mediated 
through the intermediate variable. 

– Effects of setting different levels of exposure are 
independent of the instrument 



  

How instrumental variable analysis can 
distinguish causation from confounding

– exposure x, outcome y, unmeasured confounder 
c



  

Instrumental variable analysis in economics

● Economists want to infer the effects of 
“endogenous” (intermediate) variables that are 
likely to be confounded

● Example
– age at leaving school is an “endogenous variable” 

that predicts lifetime earnings

– variation in statutory school-leaving age can be 
used as an instrument 

– can estimate the causal effect of  extra year's 
school on outcome



  

Instrumental variable analysis of clinical 
trials

● Standard “intention to treat” analysis ignores 
noncompliance

– ok for hypothesis testing, but not for inferring size 
of treatment effect

● Can treat random allocation as the instrument, 
and treatment exposure as the intermediate 
variable

– Allows size of treatment effect to be inferred with 
control for confounding by factors associated with 
non-compliance



  

“Mendelian randomization”: instrumental 
variable analysis with genetic instruments

● Find one or more genes in which variation 
perturbs levels of the biomarker. Compare 
effects on outcome of

– genetic perturbation of the biomarker

– non-genetic variation of the biomarker

● Example: 
– raised plasma fibrinogen predicts cardiovascular 

disease

– genotype in the beta-fibrinogen gene predicts 
fibrinogen levels

– genotypic effects on fibrinogen levels do not predict 
cardiovascular disease



  

Assumptions underlying instrumental 
variable analysis with genetic instruments

● Effect of genotype on outcome is unconfounded
– guaranteed by Mendel's laws, if  population 

stratification is controlled

● Effect of genotype on outcome is mediated only 
through the intermediate phenotype (no 
pleiotropy)

● To be able to generalize: effects on outcome of 
different settings of the biomarker are 
independent of the instrument
– no developmental compensation / channelling



  

Graphical model: genotype g as instrumental 
variable for effect of intermediate phenotype 

x on outcome y

c

 

g

y

x





individuals



  

Reparameterization: x = <x|g> + , 
confounder c absorbed into random term 



<x|g>



g

x

y





individuals



  

How instrumental variable model separates 
causal and confounding effects of biomarker 

on outcome

● Causal effect = effect on outcome of  
conditional expectation < x | g > of biomarker 
given genotype

● Causal + confounding effect = effect of residual 
deviation of biomarker from expectation given 
genotype



  

Inferring causal effect from relation of 
outcome to conditional expectation of 

intermediate phenotype given genotype
● Effect of genotype g on intermediate phenotype 

x

• x = 
0
 + 

g
g +  = <x|g> + 

● Effect of intermediate phenotype x on outcome 
y

• y = 
0
 + 

x
x + 


 = 

0
 + 

g 
g + 


 

● where 
g 
= 

x


g

– Causal effect parameter 
x
 = 

g 
/ 

g



  

Inferring causal effect parameter: what priors 
are reasonable

● Causal effect parameter 
x
 = 

g 
/ 

g

● but it is not appropriate to put independent 
priors on 

g 
and 

g

● Classical ratio estimator is equivalent to 
Bayesian posterior mode with diffuse 
independent priors on 

g 
and 

g

● Estimator behaves badly with weak instruments 
because priors are inappropriate



  

Hypothesis testing: define a parameter that 
spans causal and non-causal explanations

●  is ratio of causal to crude (unadjusted) effect 
of intermediate phenotype x on outcome y

● General model: y = 
0
 + (<x|g> + )

– angled brackets <> denote expectation

– No causal effect (=0): y = 
0
 +  

– All association of x with y is causal (=1):
y = 

0
 +  x +  = 

0
 + (<x|g> + )

●  < 1 would imply a causal effect opposite in 
direction to crude effect

● we can compute posterior density of 



  

Example: SLC2A9 genotype, urate, and 
metabolic syndrome in ORCADES

● Raised plasma urate levels are associated with 
metabolic syndrome

● ORCADES: 1017 adults examined for 
cardiovascular risk factors, urate

– 706 typed for 5 SNPs in SLC2A9 

●  Regression slopes

– urate on genotype: 0.22 (p=2 x 10-5)

– metabolic syndrome on urate: 0.79 (p=2 x 10-13)

– metabolic syndrome on genotype:  -0.27 (p=0.09)



  

Log-likelihood of causal/crude effect ratio θ, 
with and without allowing for intra-individual 

variation of urate levels



  

Testing the assumptions of the model

● No residual population stratification: 
– Can test for stratification (EIGENSTRAT) using 

markers, estimate genetic background and adjust 
for it

● No pleiotropy
– Can test this if multiple SNPs have been typed in 

the gene used as instrument

– relative weights of SNPs should be same for effects 
on intermediate phenotype as for effects on 
biomarker

● can construct a score test for this null hypothesis



  

Advantages of Bayesian approach to 
instrumental variable modelling

● Flexible: No need to assume linear 
relationships
– classical instrumental variable methods are a 

special case of the Bayesian approach

● Does not rely on asymptotic large-sample 
properties
– inference with weak instruments is valid

– no need to construct “estimators”

● Evaluates weight of evidence (log Bayes factor) 
for causal over non-causal explanation of 
biomarker-disease association



  

Mendelian randomization studies need very 
large case-control collections

● Where:
– N cases are required to detect effect of intermediate 

phenotype on outcome in a cohort study

– Effect of genotype on intermediate phenotype is 
modest: 0.25 standard deviations for each extra 
copy of the trait-raising allele

– allele frequency is 0.2

● 100 x N cases are required to detect the 
corresponding effect of genotype on outcome in 
a case-control study 



  

Extension to more general graphical models 
for effects of genotype, intermediate 

phenotype and environmental exposure on 
outcome

● Problem is to evaluate the posterior over 
models
– requires computing marginal likelihood of each 

model

– MCMC sampling (BUGS, JAGS) can generate the 
posterior distribution of parameters given a model, 
but (except in special cases) not the posterior over 
models

● Approximate methods (variational Bayes, 
expectation-propagation) are computationally 
tractable



  

More general approach: relax the 
assumption of no pleiotropy

● Instrumental variable argument assumes all 
effects of instrument on outcome are mediated 
through endgenous variable

● This assumption severely restricts ability to 
exploit genotype-biomarker associations for 
instrumental variable analysis

– we rarely understand genetic effects well enough 
to assume no pleiotropic effects

● With multiple genetic instruments, and some 
model of genetic effects, possible in principle to 
relax this assumption



  

Can we infer causation where there may be 
pleiotropic effects of genotype on outcome?

● “Mendelian randomization” argument assumes all 
genotypic effect on outcome  is mediated through 
biomarker

● Schadt 2005: compares fit of these 3 models with a 
penalty for number of adjustable parameters)



  

Schadt et al (2005): “likelihood-based model 
causality selection” to detect causal effects

● Initial filtering step to select relevant genotypes and 
phenotypic biomarkers (gene transcript levels)

● For each possible genotype-transcript-trait triad, 
compares three possible models:- 

– confounding / reverse causation 

– causal

– pleiotropic model with confounding
● Model choice is based on fit penalized by complexity 

(Akaike Information Criterion)



  

With multiple instruments, causal  
explanation can be distinguished from 

confounding + pleiotropy

● One 
instrument: 
3 params 
versus 2

● Two 
instruments: 
5 params 
versus 3



  

Schadt et al (2005) “likelihood-based 
causality model selection”

● Confounding and causal” models each have 2 effect 
parameters

● Pleiotropic model can fit the data perfectly (highest 
likelihood) but has 3 effect parameters (penalty for 
complexity)



  

Limitations of Schadt approach

● Can only evaluate one genotype-biomarker-outcome 
triad at a time

● Does not allow for noisy measurements

● Choice between models with and without pleiotropy 
depends upon an arbitrary penalty for complexity

– AIC is inappropriate for hypothesis testing

– Formal hypothesis test based on marginal 
likelihood would depend critically on 

● priors on model parameters
● assumptions about measurement noise



  

Sparse Bayesian linear models

● Sparse prior: prior probabilities are highest for 
models in which most effect parameters are 
zero

● Can be set up for automatic relevance 
determination: effects not supported (models 
with low likelihood) are “pruned” from the model 
as it is fitted to the data

● we don't have to specify the extent of 
sparseness: can learn a “sparseness” 
parameter from the data



  

How double exponential prior encodes 
sparsity

● Density varies inversely with sum of absolute 
values of effect parameters

● posterior is log-concave: can use EM algorithm 
to fit model



  

Sparse Bayesian instrumental variable 
analysis

● Initial filtering step to select biomarkers associated 
with outcome and genotypes associated with 
biomarkers

● Specify model with all possible genotype-biomarker-
outcome links, including pleiotropic effects of  
genotype on outcome

● Laplace (double exponential) priors on all effect 
parameters: encodes sparseness

● Convex optimization algorithm iterates to posterior 
mode

– automatic relevance determination: effects not 
supported by the data are pruned from the model



  

General model with multiple instruments, 
pleiotropy and unobserved confounding

● Observed variables: filled circles
● Unobserved variables: clear circles



  

Full model for genotype-biomarker-outcome 
associations

● Confounders encoded as latent factors that may be 
common to multiple biomarkers

● Observed values of biomarkers are noisy



  

Liver transcript levels as biomarkers for 
plasma HDL cholesterol

● 260 mice from a “heterogeneous stock” formed 
by crossing 8 inbred strains over ~ 100 
generations

● Measured
– genotypes (ancestry from founder strains) at 

marker loci 

– gene expression in liver (47000 transcripts) 
retaining only those informative for genotype

– plasma lipids

● Sparse Bayesian instrumental variable analysis 
with HDL level as outcome



  

Mutual information between HDL cholesterol 
and ancestry at genome-wide marker loci in 

HS mice



  

Using ancestry at marker loci to infer causal 
effects of transcript levels in liver on HDL 

cholesterol in HS mice



  

Fine mapping: transcripts that contain 
information about genotypic effects on HDL



  

Inferred causal effects of transcript levels on 
HDL



  

Comparison with Schadt's “likelihood-based 
model causality” test applied to CYP27B1



  

Summary (1) : causal models

● Causal relations can be represented by 
information flow in graphical models

● Classical framework allows causal effects to be 
inferred from conditional independence 
relationships under certain conditions 
(randomized instrument, or no unobserved 
confounders)

● In principle, genotypic variation can be 
exploited to infer causal effects of  phenotypic 
biomarkers on outcomes



  

Summary (2): Bayesian hypothesis testing

● Bayesian hypothesis testing is based on 
comparing (marginal) likelihoods

● In the Bayesian framework, inference about 
causality does not necessarily depend upon 
conditional independence in graphs

● Bayesian inference automatically penalizes 
unnecessarily complex explanations



  

Summary (3) “Mendelian randomization”

● Mendelian randomization applies the classical 
instrumental variable argument to inferring 
causal relations between biomarkers and 
outcomes

– Depends critically upon the “no pleiotropy” 
assumption

– Bayesian inference using MCMC overcomes 
limitations of classical “estimation” methods 

● Application is restricted to specific genes and 
biomarkers where the biology is well 
understood



  

Summary (4): learning genotype-biomarker 
outcome relationships where pleiotropic 

effects are not excluded
● With multiple genotypic instruments, it is 

possible to relax the assumption of no 
pleiotropy

● Causal explanations will be favoured if they 
explain the data equally well as more complext 
hypotheses involving pleiotropy and 
confounding

● In principle this can be applied to investigate all 
genotypes and biomarkers simultaneously



  

Summary (5): sparse Bayesian instrumental 
variable analysis

● Unified computational framework for studying 
genotypic and biomarker effects on outcome

● Sparse priors allow automatic relevance 
determination: instead of searching over all 
possible models

● Can infer causal relationships between 
biomarkers and outcomes relationships

● Software is under rapid development.  


