
1 Genes, populations and evolution

In this chapter we examine how allele frequencies vary over time and between
subpopulations, as a result of drift, mutation and selection. This is relevant to
understanding how genetic differentiation between human subpopulations has
arisen, and to understanding how allelic association between linked loci varies
with demographic history.

1.1 Genetic drift

Although the human population is now very large, during most of human evolu-
tion the total human population has been small. Since migration out of Africa
began about 100 000 years ago, the human population has been subdivided
into endogamous subpopulations or demes. The modern expansion of popu-
lation dates from the invention of agriculture about 10 000 years ago. Small
isolated subpopulations still exist exist in remote regions of the world such as
the Arctic, and on small islands. In present-day human populations, the levels
of heterozygosity, and the distances over which allelic association can be de-
tected are largely determined by past history when population size was much
smaller.

We begin by introducing the concept of genetic drift. In a population of
infinite size, allele frequencies will not change from one generation to the next
unless there is selection. In a population of finite size, allele frequencies fluctuate
at random from one generation to the next, even where there is no selection and
each gene copy has an equal chance of being transmitted to the next generation.
Drift is the change in allele frequencies that results from the accumulation of
these random fluctuations over successive generations. The smaller the popu-
lation, the more pronounced will be the effects of drift. In a finite population
undergoing drift, all but one of the allelic variants at a locus will eventually
be eliminated, if there is no mutation to generate new alleles and no selection
pressure to maintain the polymorphism. This follows from the argument about
coalescence that was obtained in the last chapter. Just as all the descent trees of
all gene copies coalesce on a single lineage if followed back far enough in a finite
population, so if a finite population of gene copies is followed forward in time
for long enough, all lineages but one will eventually become extinct. Unless the
population is small, however, the number of generations required for one of the
allelic variants to be fixed and the others eliminated can be very large.

On average, drift reduces heterozygosity (gene diversity). In the long run this
decrease in heterozygosity is balanced by the rate at which new alleles are gen-
erated by mutation. The balance between the effects of drift and mutation upon
heterozygosity will be determined by the size of the population and the muta-
tion rate of the loci under study (very low for single-nucleotide polymorphisms,
higher for microsatellite loci). Another effect of drift, described in Chapter 3, is
to generate allelic association between linked loci, as haplotypes drift away from
their equilibrium frequencies and some haplotypes are eliminated altogether. In
the long run, this increase of allelic association between linked loci is balanced
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by the decay of allelic association through recombination. The balance between
the effects of drift and recombination upon allelic association will be determined
by the size of the population and by the recombination fraction between loci.
At very short distances – less than 50 kilobases – the effects of drift dominate.

1.2 Mutations

1.2.1 Mutation rate

The definition of the rate at which spontaneous mutations occur depends upon
whether we are examining mutations at the level of single nucleotides (produc-
ing single-nucleotide polymorphisms), single codons (some of which will pro-
duce variants in protein sequence) or entire genes (as in the case of a Mendelian
disorder where mutations at many different possible sites can produce a loss-
of-function mutation). Estimates of the mutation rate in humans have been
based mainly on observations of Mendelian disorders or classical protein poly-
morphisms.

To estimate the mutation rate in humans, four main approaches have been
used.

1.2.2 Estimation from the epidemiology of Mendelian disorders, as-
suming equilibrium between mutation and selection

The earliest attempts to estimate mutation rates in humans were made for
Mendelian traits that have a dominant mode of inheritance. Even if no infor-
mation is available on what proportion of cases have an affected parent, it is
possible to estimate the mutation rate µ from the prevalence K of the trait at
birth in the population and the selection coefficient s, which for a Mendelian
dominant disorder is simply the proportion by which fitness is reduced in af-
fected individuals compared with unaffected individuals. If all affected individ-
uals die before reproductive age or are infertile, the selection coefficient is 1. In
a population of N individuals, the rate at which new mutant alleles enter the
population is 2Nµ per generation, and the rate at which they are lost is 2N.Ks
(if the mutant alleles do not undergo mutations back to the wild-type allele).

At equilibrium, K = 2µ
s

On the same principle, the equilibrium frequency of alleles for a Mendelian
recessive disorder, assuming random mating and no difference between the fit-
ness of heterozygotes as √

µ/S

where
On this basis Haldane (1932) calculated the mEstimates of mutation rates

based on the prevalence of recessive traits at birth are unreliable: the frequency
of recessive traits is increased by inbreeding, and the fitness of heterozygotes is
not usually known.
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1.2.3 Estimating the prevalence at birth of Mendelian dominant dis-
orders in births to unaffected parents

For example, in a study in Denmark, 10 heterozygotes for achondroplastic
dwarfism were found in a survey of 94000 births. Eight of these cases were
offspring of unaffected parents, and were assumed to be new mutations. From
this we can estimate the rate of mutations that disrupt this gene as about 4 x
10−5 per generation.

Unless mutations in the base sequence or protein structure are typed directly,
errors in estimates of the mutation rate are likely to arise from phenocopies
(individuals whose phenotype resembles that produced by the mutation but
who do not have a genetic defect) and from genetic heterogeneity (mutations
at several different loci). These errors tend to inflate estimates of the mutation
rate.

1.2.4 Mutationrateatthenucleotidelevel

Recent estimates of mutation rate for single nucleotides are estimated to be
about 2× 10−8 per generation() (Neel, Satoh, Goriki, Fujita, Takahashi, Asakawa,
& Hazama 1986).

Drake JW 1998 Nachman MW 1998
On this basis, each human zygote (with 3 x 109 base-pairs) will contain

about 100 new mutations

1.2.5 Mutation rate at the level of single codons or entire genes

A nucleotide substitution within a codon that does not change the amino acid in
the peptide is known as a synonymous substitution or silent mutation. The
mutation rate at the codon level is the probability that a codon chosen at random
undergoes a non-synonymous mutation: one that results in the replacement of
the amino acid in the peptide. The relationship between the mutation rate µn at
the nucleotide level and the mutation rate µc at the codon level can be calculated
as follows. If we neglect the very small probability that more than one nucleotide
substitution will occur, the probability of a nucleotide substitution in a codon
is approximately 3µn. The probability that a nucleotide substitution in a codon
will be nonsynonymous - that it will result in an amino acid replacement - is
about 3/3 . The mutation rate at the codon level (µc) is therefore approximately
3
4 × 3µn = 2.25µn

It is estimated that electrophoresis detects about one-third of all amino acid
variants.

Estimating the mutation rate from the rate of substitution

1.2.6 Mutationratesestimatedfromproteinelectrophoresis

The development of electrophoretic methods to detect variant peptide sequences
made it possible to estimate mutation rates at the level of gene, codons and
nucleotide. An early estimate by this method rate was made by Kimura and
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Ohta (1965). In a total of 320 000 individuals whose haemoglobin was examined
by electrophoresis, 62 individuals were found to be heterozygous for variants of
the haemoglobin α or β chain. Of 18 individuals heterozygous for variants of
the α or β chains whose parents were studied, two were found to have new
mutations. We can thus estimate that for the α and β chains combined, the
detectable mutations occur at a rate of

2
18 ×

62
320 000×2 = 10−5 per generation

As only about one quarter to one third of variants in amino acid sequence
are detectable by electrophoresis, we can estimate that the combined mutation
rate for the α and β chains (considered as a single locus) is about 3 x 10−5 per
generation. As these chains consist of 141 and 146 amino acids, the mutation
rate at the codon level can be estimated as about 10−7 per generation. If µcis
about 10−7 per generation, the mutation rate at the nucleotide level is therefore
about 4 x 10−8 per generation.

In a study in Hiroshima (excluding those heavily exposed to radiation from
the atomic bomb), Neel et al examined parent-offspring trios and typed 36
polypeptides by electrophoresis(.) (Neel et al. 1986). Three new mutations were
detected among 540 000 transmitted genes. This yielded an estimated detectable
mutation rate at the gene level of 6 x 10−6 per generation. On the assumption
that electrophoresis detects about one-third of variants in amino acid sequence,
the rate for mutations causing amino acid substitutions in polypeptides was
estimated to be about 1.2 x 10−5 per generation. Allowing for synonymous
mutations, they estimated the mutation rate at the nucleotide level to be about
10−8 per generation.

1.2.7 Relationofmutationratetoparentalageandsex

In females, germ cell division is complete by the time of birth and meiosis occurs
only when an oocyte matures. The number of divisions from zygote to egg is
estimated to be about 24. In males, germ cells divide continuously and many
cell divisions occur before a spermatocyte is produced. It is estimated that there
about 200 cell divisions before producing a spermatocyte at age 20, and 770 cell
divisions before producing a spermatocyte at age 45.

Watson (1965) estimated that the rate of mutation per cell division is con-
stant. If the rate of mutation per cell division is constant, we can predict that
the mutation rate per generation will be higher in men than in women, and will
be dependent on paternal age because spermatocytes from older men will have
accumulated more mutations. Crow() (1997) has reviewed the evidence for these
two predictions. If two unaffected parents produce an offspring affected b de-
termine the parent of origin of autosomal mutations. In new cases of a disorder
such as achondroplasia that is inherited as a Mendelian dominant with complete
penetrance, the mutation can be presumed to have arisen in the germ line of
one of the parents. By typing markers adjacent to the locus of the mutation it is
possible to determine which parent the mutation was inherited from. In studies
of achondroplasia and Apert syndrome (acrocephalosyndactyly), the mutations
were found to be predominantly of paternal origin. The risk of these mutations
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increases with paternal age: in cases of Apert syndrome, the average paternal
age was 6.1 years older than the average for the population, whereas there was
no effect of maternal age or birth order when paternal age was included in the
mode(.) (Erickson & Cohen, Jr. 1974).

Estimates of the mutation rate in males can also be derived from estimates
of the rate of gene substitution on the Y chromosome. The mutation rate per
generation in humans and higher primates is estimated to be 3 to 6 times higher
in males than in females.{Li, Ellsworth, et al. 1996 4803 /id}. Further support
for this “generation-time” hypothesis comes from comparisons with mice and
rats, in which the male-to female ratio for mutation rate per generation is only
about 2, similar to the corresponding sex ratio in numbers of germ cell divisions
per generation.{Li, Ellsworth, et al. 1996 4803 /id}

In a systematic review of available data on the relationship of risk of mu-
tations to parental age, about two-thirds of Mendelian dominant disorders, in-
cluding achondroplasia, Apert syndrome and Marfan syndrome, were found to
show a strong paternal age effect.{Risch, Reich, et al. 1987 4801 /id}. For the
remaining one-third, including multiple exostoses and neurofibromatosis, the re-
lationship to paternal age was weak or nonexistent. It has been suggested that
the disorders which show a strong relationship to paternal age are those which
result from base substitutions, which accumulate during germ cell proliferation.
Disorders which are not related to paternal age may result from deletions or
gene duplications, which may occur at meiosis rather than accumulating dur-
ing germ cell proliferation. For instance most cases of achondroplasia or Apert
syndrome result from single-nucleotide substitutions at specific sites. In con-
trast, most cases of neurofibromatosis result from deletions (mostly of maternal
origin) rather than base substitutions (mostly of paternal origin).

Crow points out that one way to reduce the accumulation of deleterious
mutations would be for all males to freeze sperm samples at puberty, and to use
these samples for procreative purposes.

1.3 The Wright-Fisher model

The evolution of allele frequencies through drift and mutation can be predicted
by a model developed by Fisher (1930) and Wright (1931). This model is based
on an idealized population of size N, in which each new generation of N
individuals is formed by drawing a random sample (with replacement) of two
gene copies N times from the 2N gene copies in the previous generation. “Sam-
pling with replacement” means that it is possible for an individual to inherit
two copies of the same gene copy. This sampling process will generate random
variation in allele frequencies between successive generations. The smaller the
population, the larger will be this random variation of allele frequencies across
generations. We can thus use the variation of allele frequencies to define a
measurement of population size.
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1.3.1 Effective population size

We define the effective population size Ne as the size of an idealized popu-
lation that has the same variance of allele frequencies between successive gen-
erations as that in the population under study. This is distinguished from the
census population size, which is simply the population size as determined
by counting individuals.

As humans (unlike plants) are not self-fertilizing, it is impossible for an
individual to inherit two copies of the same gene copy as in Wright’s model of
an idealized population. However if the population consists of equal numbers
of males and females mating at random, it is easy to show that the effective
population size is the same as if each new generation were formed by sampling
two gene copies N times from the 2N gene copies in the previous generation
(Wright 1931).

In an idealized population of size N, where the initial allele frequencies at a
biallelic locus under study are p0 and q0, the variance of the allele frequencies p1

and q1 in the next generation is given by the standard formula for the variance
of a binomial proportion based on 2N observations

V (p1) = V (q1) =
p0q0

2N

In a population of 1/2N men and 1/2N women mating at random, the 2N
gene copies transmitted to the next generation of N individuals consist of two
samples of size N, one from men and one from women. The variance of the allele
frequencies p1 and q1 in the total sample of 2N gene copies transmitted to the
next generation is

Var[1/2(pm + pf )] = 1/4[Var(pm) + Var(pf )] = 1
4

(
p0q0
N + p0q0

N

)
= p0q0

2N
which is the same as the variance of p1 and q1 in an idealized population of

size N
Strictly this definition, the variance effective size, is only one of three

possible ways of defining the effective population size. Two other properties
of finite populations can be used to define an effective population size. One is
that in a finite population mating at random, there is a non-zero probability
that the two gene copies transmitted to an individual are identical by descent
even when people avoid obviously consanguineous mating. This is because in a
finite population, all individuals will share common ancestors if their lineages
are followed back far enough. Thus we can define the inbreeding effective
size as the size of an idealized population in which the probability that two
gene copies sampled at random (with replacement) are identical by descent is
the same as the probability in the population under study that the two gene
copies transmitted to an individual are identical by descent. In an idealized
population of 2N gene copies, the probability that two gene copies are identical
by descent is 1/2N. Half the reciprocal of this probability is N.

Alternatively, we can define the extinction effective size as the size of
an idealized population in which the rate at which alleles are lost from the
population as a result of random drift is equal to that in the population under
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study. Except in some extreme situations, where there is random mating within
the subpopulation both these alternative definitions of effective population size
are equivalent to the variance effective size, defined above.

The effective population size of human populations is generally only about
one-quarter of the total population size that would be recorded in a complete
census of all living individuals. This is because fertility varies between indi-
viduals, and because generations overlap: only those individuals who are of
reproductive age produce offspring. Several simple formulae have been derived
that allow the effective population size to be calculated from the census size -
the total number of individuals in the population.

1.3.2 Unequalnumbersofmalesandfemales

If the population consists of Nm males and Nf females, the effective population
size is

Ne =
4NmNf
Nm +Nf

If Nm and Nf are equal, the effective population size is simply the total number
of males and females as shown above.

1.3.3 V aryingnumbersofprogeny

If G is a random variable representing the number of progeny from one of the
N parents in the population, and the population size is stable (implying that
E[G] = 2), the effective population size is approximately

Ne =
4N

V (G) + 2

If the number of progeny follows a Poisson distribution, V(G) = E (G) =2 and
the effective population size is approximately equal to N, the number of parents
in the population. In most human populations, the variance of progeny number
is larger than the mean, and the effective population size is proportionately
reduced.

If variation in fertility is inherited, and the heritability (defined later) is h2,
the effective population size is reduced further, and the equation above becomes

Ne =
4N

(1 + 3h2)V (G) + 2

It is estimated that in humans the combination of heritable and nonheritable
variation in fertility reduces population size to approximately half the value that
it would have if the number of progeny was a random variable with a Poisson
distribution (Nei and Murata).
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1.3.4 Fluctuatingpopulationsize

Where population size is fluctuating, the effective population size Ne is given
by the harmonic mean (the reciprocal of the mean of reciprocals) of the pop-
ulation sizes in each generation, If Ni is the population size in the ith of n
generations

1

Ne
=

1

n

∑
i

1

Ni

The same principle applies to the effective population size where drift is occur-
ring independently in two or more populations of unequal size. For calculating
the variance of allele frequencies between populations, the effective population
size is the harmonic mean of the population sizes in each independently drifting
population. As small values of Ni contribute disproportionately to the harmonic
mean, the effective population size of most modern human subpopulations that
have expanded in the last 10 000 years is largely set by their demographic history
during the earlier hunter-gatherer phase, when population sizes were smaller.

1.3.5 Overlappinggenerations

If Na is the number of individuals born per year who survive to reproductive
age and τ is the mean age at reproduction, then

Ne = τNa

In a typical human population where the mean age at reproduction is about
25 years and the number of individuals born each year who survive to reproduc-
tive age is about one-sixtieth of the total population, the effect of overlapping
generations is to reduce the value of Ne to about 40 percent of the total popu-
lation size (Nei and Imaizumi 1966).

1.4 Equilibrium between mutation and drift in a finite
population

In a finite population, new alleles at each locus are continuously generated by
mutation and lost from the population by drift. The balance between these
two effects will determine the frequency with which neutral polymorphisms oc-
cur. If the mutation rate and the effective population size are constant, the
heterozygosity, averaged over a large number of loci, will reach an equilibrium.
This applies only if we are choosing a sample of loci that have been identified
by methods that do not depend on the heterozygosity of the locus; for instance
if each locus is defined by the base sequence coding for a peptide. If we choose
a sample of restriction site polymorphisms or single-nucleotide polymorphisms
that have been selected for their heterozygosity, obviously these loci will be
more heterozygous than their equilibrium state.

If the mutation rate per generation at the locus is µ, the expected number
of new mutations at this locus in a population of effective size N is 2Nµ in each
generation. If there is no selection, the probability that an allelic variant will be
fixed (given that one of the allelic variants at a locus must eventually be fixed)
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is simply the frequency of that allele. Thus if a ncew mutation is neutral to
selection, the probability that this mutation will eventually become fixed in the
population is 1/2N, the initial frequency of the mutant allele. At equilibrium,
in a population of effective size N, the rate at which new alleles are created by
mutation balances the rate at which they are lost by drift. The average rate at
which alleles are completely replaced in the population will then be

2Nµ
1

2N
= µ

This is the rate of allele substitution - the rate at which alleles at the locus are
completely replaced as a result of mutation and drift. Thus the rate of allele
substitution is equal to the mutation rate, and independent of the effective
population size. This result is useful in estimating the time that has elapsed
since two subpopulations became separated, as explained later.

1.4.1 Expectedhomozygosityundertheinfiniteallelesmodelofmutation

Kimura and Crow (1964) derived a simple relationship to calculate the expected
homozygosity (or heterozygosity) at equilibrium between mutation and drift
from the mutation rate at the locus and the effective population size. This rela-
tionship is based on the assumption that every mutation produces a new allele
that does not already exist in the population. This infinite alleles model
may not be too unrealistic for sites that consist of single nucleotides, where the
mutation rate is very low and only a small proportion of sites show any vari-
ation: where there is no pre-existing variation, every mutation will produce a
new allele. The infinite alleles model may also be realistic when the locus under
study is an entire gene, and alleles are typed by electrophoresis or immunologi-
cal methods, as the number of possible peptide sequences is large. The infinite
alleles model is not a realistic model for microsatellite loci where the mutation
rate is high, alleles are detected by the number of tandem repeats they con-
tain, and mutations that increase or reduce the number of repeats are likely to
produce alleles that already exist in the population.

As in other analyses of drift, the derivation relies on the concept of effec-
tive population size. If the effective population size is N, we can consider the
two alleles at a locus in a randomly-chosen individual as obtained by sampling
without replacement from a population of 2N alleles.

Let µ be the mutation rate per generation, and Jt the expected homozy-
gosity in generation t - the probability that an individual chosen at random is
homozygous at the locus under study. This is simply the probability that two
alleles chosen at random from generation t are identical by state.

A homozygous individual can be produced in two different ways: either (i)
if two copies of the same allele are transmitted, and neither allele has mutated;
or (ii) if two different alleles are transmitted, these two alleles are identical by
state, and neither allele has mutated.

The probability that two copies of the same allele are transmitted, and nei-
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ther allele has mutated is
1

2N
(1− µ)

2

The probability that two different alleles are transmitted to an individual in
generation t, these two alleles are identical by state, and neither allele has
mutated is (

1− 1

2N

)
Jt−1 (1− µ)

2

We therefore have Jt = 1
2N (1− µ)

2
+
(
1− 1

2N

)
Jt−1 (1− µ)

2

At equilibrium, Jt = Jt−1 = J. The homozygosity at equilibrium (J) is given
by

J =
(1− µ)

2 1
2N

1− (1− µ)
2 (

1− 1
2N

) =
(1− µ)

2

2N − (1− µ)
2

(2N − 1)
≈ 1

1 + 4Nµ

To express this another way, at equilibrium the effective number of alleles at
the locus (1/J) is equal to 1 + 4Nµ.

This can alternatively be derived by an argument based on coalescence. In
the previous generation, a pair of gene copies may coalesce with probability
1/2N, fail to coalesce or mutate with probability 2µug(for the event that either
one mutates). The probability of identity is therefore the probability that the
gene copies ultimately coalesce (rather than mutate). This probability is

1/2N
1/2N + 2µ

=
1

1 + 4Nµ

1.4.2 Expectedhomozygositywherethenumberofpossibleallelesisfinite

Where the locus is a single nucleotide, there are only four possible alleles at
the locus and the infinite alleles model does not strictly apply. There is still a
simple relationship between the mutation rate, the effective population size and
the expected homozygosity at equilibrium. If there are k possible alleles at a
locus, and mutations to all allelic states are equally probable, so that with total
mutation rate µ per generation the probability that an allele will mutate to one
of the remaining (k - 1) states is µ/(k - 1).

The homozygosity at equilibrium (J) is then
1+4Nm

k−1
1+4Nm+4Nm

k−1
Where 4Nµ is small and k=4, as for single nucleotides in human populations,

the value of this expression is very close to the simpler expression obtained under
the infinite alleles model.

These expressions for expected homozygosity apply only to loci that have
been identified by methods that do not depend upon the level of heterozygosity.
For instance, we could not use these expressions to predict heterozygosity at SNP
loci that have been identified by mining sequence data from haploid genomes
to identify sites at which a single nucleotide differs sites in sequence data on
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overlapping clones from haploid genomes. With this procedure, loci that have
high heterozygosity have a higher chance of being detected and catalogued as
SNPs.

We can however use these expressions for expected heterozygosity to predict
the heterozygosity at the nucleotide level: the proportion of single nucleotides
that will differ in two haploid genomes randomly chosen from unrelated individ-
uals from the population, assuming that most of these variant sites are neutral
to selection. More usefully, we can estimate the effective population size from
the observed heterozygosity at the nucleotide level

1.4.3 Estimationofeffectivepopulationsizefromobservedheterozygosityinhumanpopulations

[Li and Sadler 1991, Przeworski 2000]
For single nucleotides, the mutation rate µ is estimated to be about 2 ×

10−8 per generation. From data obtained during efforts to sequence the human
genome using overlapping clones, the heterozygosity at the nucleotide level is
estimated to be 1 in 1300 nucleotides, or about 0.00077. The homozygosity is
therefore 0.99923.

Substituting J = 0.99923 and µ = 2 × 10−8 into the equation for expected
homozygosity under the infinite alleles model, we can estimate the effective size
of the human population as about 10 000 individuals. This means that the level
of heterozygosity in the human population as a whole is about what would be
expected in a population equivalent In other words

1.4.4 Proportionoflocithathaveagivenlevelofheterozygosity

We can also predict the proportion of loci that are polymorphic. If we define
a polymorphic locus as one where the frequency of the commonest allele is less
than or equal to 1 - q, the expected proportion of polymorphic loci is simply

1 - q4Nµ

and the expected proportion of loci that are polymorphic (frequency of com-
monest allele less than of equal to 1 - q) is given by

1− k Γ (A+B)

Γ (A) Γ (B)

(
1− qA

A
− 1− qA+B−1

A+B − 1

)
where A = 4Nµ/(k - 1), B = 4Nµ. and Γ(x) is the gamma function

If the number of possible alleles k is large, these reduce to the simpler ex-
pressions derived above for the infinite alleles model. Strictly this model does
not hold for single nucleotides, as not all nucleotide substitutions are equally
probable.

The expected proportion of loci at which we would expect to find a single
nucleotide polymorphism for which the frequency of the commonest allele is less
than or equal to 0.80 is

1 - 0.200.004 = 0.006
[Calculate using correct formula for four alleles]
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For comparison, recent experimental studies indicate that SNPs that have
this level of heterozygosity occur about once every 1000 base-pairs in the human
genome.

1.5 Loss of heterozygosity under drift in a subpopulation
compared with the ancestral total population: the fix-
ation index

From the effective population size we can predict the effect of drift upon het-
erozygosity, and model the genetic differentiation between human subpopula-
tions that has been produced by drift. For instance if we study stable poly-
morphisms such as single-nucleotide polymorphisms where the mutation rate is
low (only about 10−8 per transmission) and examine the effects of demographic
change over relatively short periods (less than 104 generations) we can ignore
the effects of mutation and fit a model based entirely on drift.

To exaimine how drift leads to variation in allele frequencies between endog-
amous subpopulations that have split off from an ancestral total population,
we consider a subpopulation of effective size N, formed by drawing a sample
(with replacement) of 2N gene copies from a total population with allele fre-
quencies p0, q0 at a biallelic locus. We write p1, q1 for the corresponding allele
frequencies in the first generation of the subpopulation.

The variance of allele frequencies in the first generation of the subpopulation
is given by

E
(
p2

1

)
− [E (p1)]

2
=
p0q0

2N

Thus E
(
p2

1

)
= p2

0 + p0q0
2N since E(p1) = p0

The expected frequency of heterozygotes in the next generation is
E(2p1q1)
= 2E(p1) - 2E(p2

1 ) = 2p0 − 2
(
p2

0 −
p0q0
2N

)
= 2p0q0

(
1− 1

2N

)
and the expected frequency of heterozygotes after t generations is therefore

2p0q0

(
1− 1

2N

)t
Thus in a subpopulation of effective size N, derived from a total population
in which the allele frequencies at a diallelic locus are initially p0and q0, the
expected heterozygosity after t generations of drift is(
1− 1

2N

)t
times the value of 2p0q0 in the ancestral total population.

At t = ∞, one of the two alleles will have become fixed and the expected
overall frequency of heterozygotes in the subpopulation is zero.

The same argument can easily be extended to loci with more than two alleles.
The proportion by which heterozygosity is reduced by drift in an endogamous
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subpopulation compared with the ancestral total population from which the
subpopulation separated, is called the fixation index (Wright 1931) and de-
noted by FST , where the subscript ST stands for “subpopulation-total”. Under
this definition,

FST = HT−HS

HT

where HT is the heterozygosity in the ancestral total population from which
the subpopulation was derived, and HS is the heterozygosity in the subpopu-
lation. The FST value for a subpopulation relative to a total population lies
between 0 and 1.

[Earlier chapter should define gene diversity and gene identity (equal to
heterozygosity and homozygosity for diploid organisms with random mating)].

The expected value of the fixation index in a subpopulation relative to the
ancestral total population depends only on the number of generations over which
the subpopulation has been drifting and the effective size N of the subpopulation.

E (FST ) =

(
1− 1

2N

)t
This relationship of FST to the effective subpopulation size N and the number
t of generations since separation from the ancestral total population applies
only if FST is calculated from stable polymorphisms such as single-nucleotide
polymorphisms, where the mutation rate is so low that the effect of mutations
is negligible in comparison with the effect of drift on allele frequencies.

1.6 Fixation index as a measure of genetic differentiation
between two subpopulations

As defined above, the fixation index FST measures the proportion by which
drift has reduced the heterozygosity of a subpopulation, compared with the
heterozygosity in the ancestral total population from which that subpopulation
was derived. This is not exactly the same as the definition originally given by
Wright, but it is the one that most easily leads to a more general definition of
FST as a measure of genetic differentiation between two or more subpopulations.

We can extend this definition to two or more subpopulations by defining
FST as the average proportion by which drift has reduced the heterozygosity in
these subpopulations, compared with the heterozygosity in the ancestral total
population. We can then use FST to measure the genetic differentiation between
these subpopulations that has resulted from drift. To calculate FST directly for
two or more subpopulations, we require the allele frequencies in each subpop-
ulation (to calculate HS as the average heterozygosity in subpopulations) and
in the ancestral total population (to calculate HT as the heterozygosity in the
ancestral total population). possible, because the subdivision of a total popula-
tion into subpopulations occurred long ago, and the ancestral total population
is no longer available for study. When studying genetic differentiation between
human subpopulations, typically we are not comparing a subpopulation with a
total population, but instead studying two or more subpopulations that have
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been derived from an ancestral total population that no longer exists. To esti-
mate FST as defined above, we have then to estimate the heterozygosity HT in
the ancestral total population from the allele frequencies in the subpopulations.
This leads to an alternative definition of FST . For simplicity, this definition is
set out below for a locus with two alleles and for two subpopulations labelled X
and Y.

We define the gene identity within subpopulations (JS) as the proba-
bility that two gene copies, each chosen at random from the same subpopulation
(also chosen at random) , are identical by state. This is the average homozy-
gosity (gene identity) of the two subpopulations. JS is equal to 1- HS , where
HS is the average heterozygosity of the two subpopulations.

We define the gene identity between subpopulations (JT ) as the prob-
ability that two gene copies, each chosen at random from one of the two sub-
populations (denoted X and Y), are identical by state. This is the expected
homozygosity in individuals who have one parent from each of the two subpop-
ulations. We can easily show that JT is an estimate of the homozygosity in the
ancestral total population from which the subpopulations separated. Suppose
that the allele frequencies in this ancestral total population were p0, q0 in that
divides at random into two subpopulations. The homozygosity of this ancestral
total population - the probability that two gene copies chosen at random from
the total population are identical by state - is (p2

0 + q2
0). As the two subpopula-

tions drift at random, their average heterozygosity declines but the probability
JT that two gene copies, each chosen at random from one of the two subpopu-
lations, are identical by state is still (p2

0 + q2
0), because the probabilities of each

allele when one gene copy is chosen at random from each subpopulation are still
p0, q0.

In the definition of FST given above, we can then replace HT by (1 – JT ),
and HS by
(1 - JS) to obtain

FST =
JS − JT
1− JT

This definition of FST in terms of gene identity probabilities depends only upon
the allele frequencies in the subpopulations.

For two subpopulations X and Y that have allele frequencies pX , qX and
pY ,qY the gene identity between subpopulations is given by

JT = pXpY + qXqY
and the gene identity within subpopulations is given by
JS = 1 - 1/2(2pXqX + 2pY qY ) = 1 - pXqX - pY qY
Substituting these expressions into the definition of FST yields, after some

algebra

FST = (pX−pY )2

2(p̄−pXpY ) where p̄ = 1
2 (pX + pY )

This expression for FST in terms of allele frequencies in subpopulations can
be generalized to loci with more than two alleles, and to more than two sub-
populations [Reynolds, also Pons and Chaouche 1995]. In practice, the allele
frequencies pX and pY in the two subpopulations X and Y are not known ex-
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actly, and have to be estimated by genotyping samples of individuals from each
subpopulation. To obtain unbiased estimates of the gene identity probabilities,
it is necessary to correct for sampling error.

Where n individuals have been sampled from a homogeneous subpopulation
and a biallelic locus has been typed, an unbiased estimate of the gene identity
within this population can be calculated as

1− n

n− 1
2p̂q̂

where p̂and q̂ are the estimated allele frequencies. [check this please].
[Pons and Chaouche 1995]
To obtain reliable estimates of FST for a pair of subpopulations, the propor-

tionate reduction in heterozygosity is estimated from allele frequencies at many
loci. To estimate FST distances, , the most appropriate loci are stable poly-
morphisms that are likely to be neutral to selection, such as single nucleotide
polymorphisms in noncoding regions of DNA are most suitable. Estimates of
FST from classical polymorphisms, where the locus is an entire gene and alleles
are typed by protein electrophoresis, are similar to estimates based on restriction
site polymorphisms or SNPs.

Empirical evidence suggests that the proportion of markers that have ex-
treme frequency differentials between human ethnic groups is larger than would
be expected under a purely neutral model (.) (Bowcock et al. 1991).

1.7 Fixation index as a measure of genetic distance be-
tween subpopulations

From the definition of FST in terms of gene identity probabilities, we can derive
a useful measure of genetic distance – the extent of genetic differentiation
- between human subpopulations. Confusingly, the term genetic distance is
sometimes used as a synonym for the map distance between two linked loci. We
shall use it only for measures of genetic differentiation between subpopulations.

The relationship derived above shows that in subpopulations of effective size
N after t generations of drift, the expected fixation index is given by

FST = 1−
(

1− 1

2N

)t
If the effective population size N is large, we can approximate this expression
for FST by an exponential function, using the equation

ex = lim
a→0

(1 + a)
x
a

Substituting a = -1/2N and x = -t/2N into this equation gives

FST = 1−
(

1− 1

2N

)t
≈ 1− e−t/2N
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This is an example of a diffusion approximation, in which the discrete changes
in allele frequencies are approximated by a continuous process.

To obtain a fmeasure of genetic distance in terms of FST it is convenient to
rearrange the equation FST ≈ 1− e−t/2N to give

t

2N
≈ − loge (1− FST )

The expression loge (1− FST ) is known as the FST distance. This can take
values between 0 (when FST = 0) and infinity (when FST = 1 as with two inbred
strains of mice). Where FST is small, as it is between all human subpopulations,
the FST distance loge (1− FST ) is close to the fixation index FST . If there has
been no mutation and no selection pressure at the loci under study, the FST
distance between two subpopulations should depend only on N, the effective size
of the subpopulations (as the harmonic mean over both subpopulations and all
generations) and t, the number of generations since separation.

If the “out-of-Africa” hypothesis is correct, we can model the history of hu-
man subpopulations as having been formed by separation from an ancestral
total population in Africa. For instance, the first migration of anatomically
modern humans out of Africa some 100 000 years ago must have subdivided the
total human population into at least two endogamous subpopulations. Settle-
ment of other regions within and outside Africa has led to further subdivision.
FST distances between human subpopulations have been estimated by Cavalli-
Sforza, using phenotypic markers such as serum proteins. The estimates are
summarized in the table below:-

[Add table of FST distances]
The FST distances between non-African and sub-Saharan African popula-

tions are generally in the range 0.15 to 0.2. It is estimated that Africans and
non-Africans separated about 100 000 years ago [Cavalli-Sforza], equivalent to
about 5000 generations. From the expression for the FST distance above, we
have 0.2 = 5000/2N, where N is the population effective size (harmonic mean
over both subpopulations and all generations). From this we can estimate N
as about 12000. As we shall see later, the effective size of African populations
appears to be much larger than the effective size of European and other non-
African populations.

For a given value of the FST distance between two subpopulations, the dis-
tribution of FST values over a large number of loci can be tested for departure
from the distribution expected under the neutral theory. This has been used
to test for evidence of disruptive selection pressure on polymorphisms since
subpopulations became separated.

1.8 Modelling drift using coalescent theory

An alternative way to model the evolution of genes is to use coalescent theory.
Under neutrality, it is assumed that each lineage chooses one ancestor at random
from the population in the previous generation.

For this example N is the size of the haploid population
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T(j) is the time for the size of the genealogy to be reduced from j to (j - 1),
measured in units of N generations.

In the diffusion limit, T(j) is exponentially distributed with parameter

(
j
2

)
and E(TMRCA) = 2 if the sample size is large
Thus if there are N copies of an allele in the population, the expected time

back to the most recent common ancestor of these copies, assuming neutrality
and no new mutations, is 2N generations.

Implications: where the allele is rare and the effective size of the total popu-
lation is small (as for rare disease-causing mutations in Finland), the time back
to the most recent common ancestor will generally be short . For a common
allele, unless there has been extreme constraint of population size, the most
recent common ancestor will be a long way back in the past. For example, in
a population whose effective size (harmonic mean over the time back to coa-
lescence is 10 000 individuals, the effective number of copies of an allele that
has frequency 20% is 4000. The expected time back to the most recent com-
mon ancestor, assuming neutrality and no new mutations since the allele first
arose, is therefore 2 × 4000 generations (about 160 000 years). This suggests
that most single-nucleotide polymorphisms are very old, antedating the split
between African and non-African subpopulations some 100 000 years ago. This
is consistent with the empirical observation that most common single-nucleotide
polymorphisms present in non-African populations are present in African pop-
ulations also.

1.8.1 Measuresofgeneticdistancethatdependuponthemutationrate:Nei′sstandardgeneticdistance

A widely-used measure of genetic distance was defined by Nei (1975) as the
standard genetic distance D.

This is defined by D = - [loge JXY - 1/2(loge JX + JY )]
where JXY is the gene identity between subpopulations X and Y, JX is the

homozygosity in subpopulations X, and JY is the homozygosity in subpopulation
Y.

If piX and piY are the frequencies of alleles of type i in subpopulations X
and Y,

JXY =
∑
piXpiY , JX =

∑
p2
iX and JY =

∑
p2
iY

D lies between 0 and infinity.
Nei’s D was developed for use with classical protein polymorphisms, where

each locus under study is an entire gene, and the alleles are variants in peptide
sequence, detected by electrophoresis or immunological reactions. In this situa-
tion the terms loge JXY , logeJX and logeJY are related to the probability that
at a single codon within the locus, the amino acid specified by the codon differs
in two alleles (peptide sequences) chosen at random..

If cX is the probability (assumed same for all codons) that the codon differs
in two alleles chosen at random from population X, and the allele is made up
of n codons, the homozygosity JX at the locus is given by

JX = (1 - cX)n ≈ exp(-ncx) since cx is small
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It follows that loge JX ≈ -ncX .
The expectation of this expression is the mean number of codons that differ

in two alleles chosen at random. We can define cY and cXY similarly, so that
D ≈ n [cXY − 1/2(cX + cY )]
D is thus an estimate of what Nei calls the net codon differences per

locus between two subpopulations: the expected number of codons that differ
in a pair of alleles chosen at random from subpopulation X and subpopulation
Y, minus the average of the expected number of codons that differ in a pair of
alleles chosen at random within each subpopulation. Note that the net codon
differences per locus is proportional to n, the number of codons that make up
the allele. The more amino acids in the peptide, the higher will be the value of
D.

Under certain assumptions – that an infinite alleles model holds, that all
alleles neutral to selection, and that both subpopulations X and Y are in equi-
librium between neutral mutation and drift, D is proportional to the number of
generations since the two subpopulations became separated.

Suppose that two subpopulations X and Y are formed from a total popula-
tion. We write JXY (t) for the gene identity between subpopulations X and Y
at t generations after separation, and µ for the mutation rate at the codon level
per generation.

The probability that two alleles made up of n codons are identical by state
in generation t+1, given that they are identical by state in generation t, is (1 -
µ)2n if the infinite alleles model applies

Thus JXY (t + 1) = JXY (t).(1 - µ)2n

If subpopulations X and Y are in equilibrium between mutation and drift,
and all alleles are neutral to selection, JXY (0) = JX = JY

It follows that JXY (t) = (1 - µ)2nt

D = − loge
JXY√
JXJY

= − loge

[
(1− µ)

2nt
]
≈ 2nµt

If an estimate of the mutation rate µ at the codon level is available, and D
has been estimated by typing a large number of classical protein loci, we can
use this relationship to estimate t, the number of generations since two human
subpopulations became separated.

For instance Nei and Roychoudhury (1974) estimated from typing 62 protein
loci that the standard genetic distance D between Europeans and west Africans
was 0.023. The rate at which electrophoretically detectable mutations occur
per protein locus is estimated to be about 10−7 per year, or 2.5 x 10−6 per
generation if the average generation time is 25 years. As this is the mutation
rate per protein locus, rather than per codon, we can substitute it for nµ.

This gives t = D
2nµ = 0.023

2×2.5×10−6 = 4600
If average generation time is 25 years, 4600 generations is equivalent to 115

000 years. This is consistent with other estimates of the time since the split
between African and non-African subpopulations.

Although Nei’s D statistic was developed for use with classical protein poly-
morphisms, it can be calculated for any type of locus where the infinite alleles
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model applies, the alleles are neutral and there is an equilibrium between mu-
tation and drift. Where the locus consists of an entire gene, these conditions
are likely to apply because the gene consists of a large number of independent
subunits (codons or nucleotides) in which mutations occur independently and a
mutation in any subunit is enough to generate a new allele. Values of D calcu-
lated from stable polymorphisms such as SNPs cannot be interpreted in terms
of the mutation rate or the number of generations since separation.

The value of D depends upon the rate at which detectable mutations occur.
Thus much higher values of D would be obtained if allelic variants were distin-
guished by sequencing entire genes to detect all variants in base sequence, rather
than by electrophoresis of proteins, which will detect only non-synonymous mu-
tations in codons (and only about one-third of these).

1.9 Other measures of genetic distance between subpop-
ulations that depend on drift

1.9.1 Edwards′sdcoefficient

Another measure of genetic distance that is closely related to FST is the d
coefficient defined by Edwards (1971). This is based on a geometric model.
Suppose that, for a locus with two alleles, we plot the allele frequencies pX , qX
in subpopulation X and pY , qY in subpopulation Y on a graph with axes scaled
as
√
pand

√
q.

As p + q = 1, the two points that define allele frequencies in each subpop-
ulation lie on the circumference of a quarter circle with radius 1. Edwards’ d is
defined as

d =
√

1− cos θ

where θ is the angle between the radii connecting the two points to the origin.
If the differences in allele frequencies between the two subpopulations X and Y
are not large, then

2d2 = FST

1.9.2 Wahlundvariance

The fixation index FST measures the average proportion by which heterozy-
gosity in subpopulations has been reduced since they separated from the total
population. An alternative measure of genetic differentiation between subpopu-
lations, which does not depend upon any assumptions about an ancestral total
population, is simply to estimate the average proportion by which heterozygos-
ity in these subpopulations is lower than in a total population formed by pooling
these subpopulations into a single population. Where the total population is
made up of endogamous subpopulations that have different allele frequencies,
heterozygosity is lower than if there is random mating between all members of
the total population. This proportionate reduction in heterozygosity that re-
sults from partition of a total population into two subpopulations is called the
standardized variance of allele frequencies or the Wahlund variance,
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after the geneticist who defined it in 1928. We shall use the symbol f for the
Wahlund variance, to distinguish from the fixation index FST .

Suppose that the allele frequencies at a biallelic locus are pX , qX in sub-
population X and pY , qY in subpopulation Y. If equal numbers of individuals
from the two subpopulations were combined to form a total population, the
heterozygosity Ht of this total population would be given by

Ht = 2p̄ q̄ where p̄ = 1
2 (p1 + p2) and q̄ = 1− p̄.

Although each subpopulation is in Hardy-Weinberg equilibrium, the total
population will not be in Hardy-Weinberg equilibrium. Instead, because there
are two endogamous subpopulations with different allele frequencies, the mean
heterozygosity (HS) of the two subpopulations is given by

HS = 1/2(2pXqX + 2pY qY )
This expression is always less than or equal to 2p̄ q̄. This can be seen by

plotting heterozygosity H - defined as the function 2p(1 - p) - against allele
frequency p. This gives a curve that is concave downwards. Because the curve
is concave downwards the y-coordinate of the mid-point of a straight line drawn
between two points on the curve (the average heterozygosity HS = 1/2(pXqX +
pY qY ) of two subpopulations with allele frequencies pX and pY ) must be less
than the y-coordinate of the point on the curve that has the same x-coordinate
as this mid-point (which is the heterozygosity of a pooled population with allele
frequency 1/2(pX + pY ). This is an example of a mathematical principle known
as the Jensen inequality, which states that for any function that is concave
downwards, the mean of the function is less than or equal to the function of the
mean; this general result is known in mathematics as the Jensen inequality
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The reduction in heterozygosity that results from partition of the total popu-
lation into two equally-sized subpopulations that have different allele frequencies
is then

HS – HT

= 2p̄ q̄−(p1q1 + p2q2) = 2× 1
2 (p1 + p2) . 12 (q1 + q2)−(p1q1 + p2q2) = 1

2 (−p1q1 + p1q2 + p2q1 − p2q2)

= 1
2 [p1 (p1 − p2)− p2 (p1 − p2)] = 1

2 (p1 − p2)
2

The reduction in heterozygosity HS - Ht can then be expressed as a propor-
tion of the heterozygosity Ht of the total population.

f =
Ht −Hs

Ht
=

1
2 (p1 − p2)

2

2p̄ q̄
=

1
4 (p1 − p2)

2

p̄ q̄

Because the average heterozygosity of subpopulations is always lower than the
heterozygosity of a total population formed by pooling these subpopulations, f
always lies between 0 and 1. This definition of f as the proportionate reduc-
tion in heterozygosity of subpopulations compared with the total population
formed by pooling these subpopulations (Ht - HS )/Ht can be generalized to
loci with more than two alleles, and to more than two subpopulations. Nei
refers to this proportionate reduction in heterozygosity as the coefficient of
gene differentiation, and uses the symbol GST .

The terms “standardized variance” and Wahlund variance refer to an alter-
native definition of f in terms of the variance of allele frequencies. If pX and
pY are the values of two observations sampled from an underlying distribution,

1
4 (p1 − p2)

2
is the sample variance 1

2

2∑
i=1

(pi − p̄)2

Note that this is the sample variance - the sum of squared deviations from the
sample mean divided by the number of observations- rather than an estimate of
the variance of an underlying probability distribution. To calculate an unbiased
estimate of the variance of an underlying probability distribution from a sample
of n observations, we would divide the sum of squared deviations from the
sample mean by (n - 1).

If we assign numeric values of 0 and 1 to the two alleles, the variance of the
allelic value in the pooled population where the allele frequencies are p̄ and q̄
is simply the binomial variance p̄ q̄. The Wahlund variance f is therefore the
ratio of the variance of allele frequencies in the sample of two subpopulations
to the variance p̄ q̄of the mean allelic value p̄ in the pooled population.

1.9.3 RelationofWahlundvariancetofixationindex

The distinction between Wahlund variance and fixation index is not always
clearly made; for instance Cavalli-Sforza defines the two terms to be synony-
mous. This is set out here to minimize confusion.

For two or more subpopulations that have mean heterozygosity HS :-
the Wahlund variance (f ) is Ht−HS

Ht

the fixation index (FST ) is HT−HS

HT
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where Ht is the heterozygosity that would exist in a total population formed
by pooling equal numbers of individuals from each subpopulation, and HT is the
heterozygosity in the ancestral total population from which the subpopulations
are derived. Ht can be calculated directly from the allele frequencies in the
subpopulations under study, whereas HT (usually) has to be estimated from
the gene identity JXY between subpopulations, also a function of the allele
frequencies in the subpopulations under study.

For s subpopulations f and FST are related by the equation f =
(1− 1

s )FST

1−FST
s

If the number s of subpopulations is infinite, this equation reduces to f
= FST . In other words, when the number of subpopulations is infinite the
heterozygosity Ht of a total population formed by pooling these subpopulations
is the same as the heterozygosity HT of the ancestral total population.

If there are only two subpopulations, this equation reduces to f = FST /(2
- FST ). If FST is small (<0.25) as it is between all human subpopulations, this
expression reduces to f ≈ 1/2FST .

As noted earlier, more complicated formulae are required to estimate both
f and FST to allow for sampling error in measuring the allele frequencies in
subpopulations.

Either f or FST can be used to summarize variation in allele frequencies at
a single locus, or the average variation over a large number of loci. One use of
f values, as outlined later, is as a measure of the information about ancestry
(which subpopulation) that is conveyed by typing an allele at a marker locus.

f is less useful as a measure of the average genetic distance between two or
more subpopulations because it depends upon the number s of subpopulations
studied, whereas FST depends only on the effective population size N and the
number t of generations since separation.

1.9.4 Approximatingdriftbyadiffusionprocess

For an initial allele frequency of p0 in a population of size N, the probability
distribution of the allele frequency after t generations of random drift can be
derived by approximating the fluctuations in allele frequencies by a diffusion
process (Kimura).

Equation for probability that an allele with initial frequency p0 will become
fixed.

1.10 Allelic association and drift

Under a neutral model, approximate expressions can be obtained for the ex-
pected value of the squared allelic correlation coefficient r.

Where the mutation rate is small compared with the recombination fraction
θ, the expectation of r2 (estimated from a large sample) is approximately

E
(
r2
)

=
1

1 + 4Neθ
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We showed earlier that the effective population size Ne can be estimated from
observed heterozygosity at the nucleotide level as about 104. If the ratio of map
distance to physical distance is approximately 1 cM per 1 Mb, we would expect
to observe strong allelic association (r2 > 0.5) commonly at physical distances
up to 2.5 kb, and to observe useful allelic association (r2 > 0.1) commonly at
distances up to 20 kb.

Pritchard and Przeworski review studies that have examined the relation of
allelic association to physical distance, and compare the empirical findings to
the theoretical predictions. They note that some studies have reported allelic
associations at distances greater than 1 cM, which is not predicted by the pop-
ulation genetic model. On the other hand, at short distances (<10 kb), as when
multiple SNPs are typed within a single gene, the allelic associations are weaker
than predicted by the model.

They suggest several possible explanations:-

1. Therelationshipofrecombinationratetophysicaldistancevariesacrossthegenome

2. SeveralstudiesarebasedontheXchromosome,wherehigherlevelsofallelicassociationareexpectedbecausetheeffectivepopulationsizeissmaller(3/3 × 2N)andrecombinationbetweenXchromosomescanoccuronlyinfemales.

3. Haplotypefrequenciesmaybeestimatedinaccurately,especiallywherepopulationsshowpronounceddeparturefromH−Wequilibrium.

4. Predictionsofallelicassociationbasedonamodelofconstantpopulationsizemaybeunderestimates:butPritchardandPrzeworskiarguethatthemodelofconstantpopulationsizewhereinrealitythepopulationhasbeengrowingleadstooverestimationoftheexpectedallelicassociation.

5. AllelicassociationbetweenmicrosatellitelocimaybestrongerthanbetweenSNPloci

6. Someofthepopulationsstudiedhavebeenformedbyrecentadmixture,orareinbred.

7. 4
Someofthepopulationsstudiedmayhaveundergoneapronouncedbottleneckinthepast,sothattheestimateofNe=10maybefartoohigh.

8. Selectionmayhavegeneratedallelicassociationsoverrelativelylongdistanceswhereararefavourablemutationhasbeenrapidlyswepttofixation.

9. Geneconversionmaybreakupallelicassociationsbetweenclosely−linkedmarkers

10. Inversionpolymorphismsmayallowstrongallelicassociationstodevelopoverlongdistances

1.11 Time since coalescence

(i) infinite sites model For a sample of n alleles drawn from a population
of alleles of constant size 2N, the expected number t of generations since coa-
lescence of the descent tree of these n alleles is given by

E (t) = 4N

(
1− 1

n

)
For instance, in an isolated population of constant size 5000 individuals, there
will be 3000 copies of an allelic variant that has frequency 0.3. If we assume
that the allele frequency has been constant, the copies of this allelic variant can
be considered as a population of constant size 3000. For all copies of the allele
that exist in the present-day population, the expected number of generations
back to coalescence is 12000: about 250 000 years. This is the “age” of the allele
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– note that this coalescence time is not necessarily the same as the time back
to a common ancestor.

As discussed later, there is evidence that the effective size of the popula-
tion ancestral to modern humans may have been only about 10 000 individ-
uals(.)(Zietkiewicz et al. 1998), and that populations that were ancestral to
non-African populations had even smaller effective size.

Where the allele frequency is lower, and the population has been small for
many generations, the expected time back to coalescence is much shorter. For
instance, in an isolated population of constant effective size 1000 individuals,
the expected time back to coalescence of an allele with frequency 1% (20 copies)
is only 80 generations: about 2000 years.

The same argument applies when we consider all alleles of a given type as
the population under study, assuming that no new copies of this variant arise
by mutation of other allelic variants.

The time since coalescence is likely to be shorter for alleles at microsatellite
loci, which have a high mutation rate and are highly polymorphic so that no
single allele is common, than at SNP loci which have a low mutation rate and
where both alleles may be common. , as at microsatellite loci. Both these
factors will tend to shorten the time since coalescence for a randomly-chosen
allele at one or other loci.

Association of a disease-causing mutation with haplotypes, or alleles at a
highly polymorphic locus may be detectable over relatively long distances even
if not all the copies of the mutation coalesce on a recent common ancestor. For
instance, where a mutation has arisen more than once in the history of the pop-
ulation, it may be that some copies of the mutation existing in the present-day
population coalesce on a recent common ancestor, while the other copies coa-
lesce much further back in time. In this situation, there will not be a single
ancestral haplotype, but the distribution of haplotypes between chromosomes
bearing the disease-causing mutation and chromosomes not bearing the muta-
tion will be non-random. than one point.

(ii) infinite alleles model Hudson ()(Hudson 1985) undertook extensive sim-
ulations to examine the sampling distribution of allelic association under the
infinite alleles model. He concluded that if 4Nθ was less than 10, strong al-
lelic association would commonly occur, and that allelic association might be
detectable if 4Nθ was as large as 50.

Thus in a population where (until recently) the effective size has been about
5000 individuals, we might expect to see allelic association commonly when
θ <10/(4 x 5000), or when x < 0.05 cM, equivalent to about 50 kilobases.
For strong allelic association to occur frequently at x = 1 cM, the effective
population size must be only about 250 individuals.

1.11.1 Averageageofaneutralmutation

The statistical theory of drift can be used to estimate the average age of neutral
mutations from the allele frequency and effective population size. The average
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time required for the mutant allele to reach for the first time a frequency p from
its initial frequency of 1/2N is the average first arrival time. The average age
of the allele will be greater than the average first arrival time, as it is possible
that for the allele frequency to arrive at a value of p more than once. If we can
neglect the possibility that the allele that is less common has previously been
fixed and has subsequently declined as a result of new mutations, there is a
simple formula (Kimura and Ohta 1973) for the average age t of a neutral allele
that has reached an allele frequency of p in a population of effective size N

t = −4N
p

1− p
loge p

where t is the number of generations since the mutation arose.
The average age of the mutation is thus independent of the mutation rate,

and of the same order as the effective population size N. If the effective popula-
tion size through most of human evolution has been about 105 individuals, the
average age of a neutral allele that has frequency 0.2 is between 20 000 gener-
ations - equivalent to 4 x 105 years. This is greater than the estimated 2 x 105

years since coalescence of mitochondrial ancestry for all humans now alive. As
the mutation rate at the nucleotide level is very low, most neutral SNPs are very
old. As shown earlier, the average age of alleles that have frequency of more
than 0.20 can be estimated to be of the same order as the age of our species,
and far greater than the 5000 generations since the deepest split between human
subpopulations: that between Africans and non-Africans.

1.12 Fitness and selection

1.12.1 Testsofselectiveneutrality

The infinite alleles model can be used to construct tests of selective neutrality.
Selection will generally lead to lower heterozygosity than expected under the
neutral theory. In general the commonest allele will be more common than
expected, and the less common alleles will be rarer than expected, because
selection acts to eliminate rare and usually deleterious alleles as they enter the
population by mutation.

Suppose that we type the locus under study in a sample of n chromosomes
from the population, and identify k allelic variants in this sample. We can sum-
marize the distribution of these distinct alleles in a table as an allelic partition.
This table has two rows. In each column, the cell in the first row contains a
value i, and the cell in the second row contains the number of alleles that are
present i times in the sample.

For example, suppose we type a sample of 150 chromosomes from the popu-
lation and identify eight allelic variants. Three of these alleles occur only once,
one occurs twice, two occur 5 times, another 20 times and the commonest allele
occurs 115 times

The allelic partition is
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Total
i 1 2 5 20 115
ai 3 1 2 1 1 8

Note that Σai = k and Σi.ai = n. For an alleles that occurs i times, the
allele frequency is i/n. The heterozygosity is therefore

1−
∑
i

ai

(
i

n

)2

= 1− 1

n2

∑
i

aii
2

Given k distinct alleles (k ≥ 2) observed in a sample of size n (n > k), we can
imagine two extreme situations:-

1. an lopsided allelic partition, such that one distinct allele type occurs
[n - (k - 1)] times, and the remaining (k-1) distinct allele types occur once
only. The average value of ai is then 1/2[1 + (k-1)] = 1/2k, the maximum
possible value . For example, if eight allelic variants are present in a
sample of 150 chromosomes, the lowest possible heterozygosity would be
when one allele occurs 143 times and the other seven alleles occur once
only. The average value of ai is then 1/2(1 + 7)

(ii) a more even allelic partition, such that the k × 1 table of allele frequencies
in the sample contains k unique values. Thus ai = 1 for all i, and the average
value of ai is 1.

This suggests that we can use the average value of ai as the basis of a test for
whether the commonest alleles are more common than expected, and the rarest
alleles are rarer than expected under a model for equilibrium between mutation
and drift. If selection pressure has acted to eliminate rare alleles, the mean value
of ai will be higher than expected. This is the basis of the Ewens-Watterson
test of selective neutrality.

Ewens’s sampling formula – quote it in full?
Ewens (1972) showed that the expected value of ai under the infinite al-

leles model, given that k distinct alleles have been observed in a sample of n
chromosomes, is given by:-

E(ai | k distinct alleles in sample size n)=
n!|Sk−1

n−1|
i(n−i|Sk

n|)
where

∣∣Skn∣∣ is a Stirling number of the first kind: the coefficient of θk in the
expansion of θ(θ + 1)(θ + 2). . .(θ + n -1) as a polynomial, where θ = 4Nµ.

To test for departure from the infinite alleles model of drift, given that k
alleles have been observed in a sample of n gametes, the sum of the squared allele
frequencies in the sample (the homozygosity) can be used as a test statistic. In a
large sample, this is equal to the homozygosity in the population. The sampling
distribution of this test statistic under the null hypothesis of selective neutrality
can be generated by simulation, given the sample size and the number of distinct
alleles. An algorithm to generate this distribution, based on the Ewens sampling
distribution, was described by Stewart (1977).
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As this test depends upon the infinite alleles model, it can be used to test
for selective neutrality only where alleles are classified at the level of the entire
gene and the infinite alleles model is therefore a reasonable approximation.

Example of a test of selective neutrality: Ros Harding’s paper on the MC1R
gene

1.12.2 Effectofselectionpressurewhenthereisheterozygoteadvantage

For some polymorphisms, allele frequencies have been determined by the point
at which the advantages of the heterozygous genotype are balanced by the
disadvantages of the homozygous genotype. The best-understood examples
are haemoglobinopathies where the heterozygote has increased resistance to
malaria.

Fitness of an individual is defined as the expected number of that individ-
ual’s offspring that survive to reproduce in the next generation

Effect of selection pressure on allele frequencies for a biallelic polymorphism
A1A1 A1A2 A2A2 Total

Fitness w1 w2 w3

Frequency before selec-
tion

p2 2pq q2 1

Frequency after selection w1p2 2w2pq w3q2 w1p2 + 2w2pq + w3q2

Frequency p/ of allele A1 after selection is
w1p2 + 1/2.2w2pq
= p(w1p +w2q)

At equilibrium p′

q′ = p(w1p+w2q)
q(w2p+w3q)

= p
q

pe
qe

=
w2 − w3

w2 − w1
=

1− w3

w2

1− w1

w2

Thus at equilibrium, the ratio of the frequencies of allele A1 and A2 is the ratio
of the proportionate reduction in fitness for genotype A2A2 compared with
the heterozygote to the proportionate reduction in fitness for genotype A1A1

compared with the heterozygote.
We can use this to estimate what reduction in fitness has selected for allele

frequencies of 10% for beta-thalassaemia in some eastern Mediterranean popu-
lations. As beta-thalassaemia homozygotes cannot survive to reproductive age
without blood transfusions, it can be assumed that over the period in which
selection has been operating the fitness of beta-thalassaemia homozygotes has
been zero.

We have pe = 0.1, qe = 0.9, and w1/w2 = 0
Substitution into the equation above gives w3/w2 = 0.89
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Thus we can estimate that if the reduction in fitness for AA homozygotes
compared with beta-thalassaemia heterozygotes was entirely attributable to in-
creased risk of dying from malaria before reproductive age, this excess risk was
about 11% in eastern Mediterranean populations.

For the sickle cell trait (Hb S) allele, allele frequencies in some west African
populations are as high as 15%. The fitness of SS homozygotes is higher than
zero however, as some survive to reproductive age. If the fitness of SS homozy-
gotes is assumed to be 30%, we have pe = 0.15, qe = 0.85, and w1/w2 = 0.3
Substitution into the equation above gives w3/w2 = . This implies that the risk
of death from falciparum malaria before reproductive age in AA homozygotes in
some areas of west Africa may have been be as high as XX%. This is consistent
with what is known of the magnitude and causes of childhood mortality in west
Africa: randomized trials of measures to prevent exposure to mosquitoes have
shown that childhood mortality can be reduced by up to one-third (check rates).

Time taken to reach equilibrium is about 100 generations. This is compatible
with estimates that the spread of malaria in Africa was associated with the
development of agriculture within the last 3000 years.

Effect of change in selection pressure

1.12.3 Geneticload

Genetic load is defined as the proportion by which average fitness of a popu-
lation is decreased in relation to the fitness that the population would have if
all individuals had the genotype that has maximum fitness (Crow 1958).

Comparison with the population attributable risk fraction in epidemiology.

Mutational and segregational load Mutations that have an observable
effect are almost always deleterious. Experimental studies in Drosophila suggest
that most mutations which have observable effects cause only a slight reduction
in fitness, and that the average fly carries about one new mutation causing slight
reduction in fitness{Crow 1997 4798 /id}.

Estimation of the genetic load from mortality data
Number of lethal equivalents
Number of genes contributing to severe mental handicap

1.13 Exercises

1.13.1 Calculationofeffectivepopulationsize

Suppose that we are able to observe the fluctuation of allele frequencies between
successive generations at a locus where the two alleles have frequencies p and q,
and estimate the variance V of allele frequencies at this locus. In an idealized
population of size N, we could calculate this variance as the variance of the
mean of 2N observations from a binomial distribution, given by pq/2N.

Ne can therefore be defined as pq
2V
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1.13.2 Effectivepopulationsizewhenthenumbersofmalesandfemalesareunequal

This formula can be derived by using the definition of population effective size
as the inbreeding effective number.

The inbreeding effective number is defined as half the reciprocal of the prob-
ability that two alleles chosen at random from the population for any locus are
identical by descent.

We consider a population of Nm males and Nf females in which population
size is constant and mating is random. For two alleles chosen at random from
the population in generation t, the probability that both alleles came from males
in generation t -2 is 1/4. The conditional probability that they are identical by
descent, given that both alleles came from males in generation t - 2, is 1/2Nm.
The probability that these two alleles are identical by descent and came from a
male in generation t is therefore 1/8Nm. Similarly, the probability that these
two alleles are identical by descent and came from a female in generation t -2 is
1/2Nf .

The inbreeding effective number Ne is therefore half the reciprocal of 1
8Nm

+
1

8Nf

This yields Ne =
4NmNf

Nm+Nf

1.13.3 RelationbetweenWahlundvarianceandfixationindex

Suppose that there are s subpopulations derived from an ancestral total pop-
ulation. We write pi, qi for the allele frequencies in the ith subpopulation at
a biallelic locus. Let J0 be the mean homozygosity of the subpopulations: the
probability that two alleles chosen at random from a randomly-chosen subpopu-
lation are identical by state. Let J1 be the homozygosity of the total population:
the probability that when two subpopulations are chosen at random and one al-
lele is chosen at random from each subpopulation, these two alleles are identical
by state.

We have J0 = 1
s

∑(
p2
i + q2

i

)
and J1 = 1

s2

∑
j

∑
j

(pipj + qiqj)

We can derive a recurrence relation for J
(t)
0 as

J
(t+1)
0 =

1

2N
+

(
1− 1

2N
J

(t)
0

)
We have DST =

(
1− 1

s

)
(J0 − J1) and HT = 1− J0 +DST = 1− J0 − J0−J1

s

Therefore f =
(1− 1

s )(J0−J1)

1−J0−
J0−J1

s

If equal numbers of individuals from the two subpopulations were combined
to form a total population, the heterozygosity Ht of this total population would
be given by

Ht = 2p̄ q̄ where p̄ = 1
2 (p1 + p2) and q̄ = 1− p̄.

Instead, because there are two endogamous subpopulations with different
allele frequencies, the mean heterozygosity (Hs) of the two subpopulations is
given by
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Hs = 1/2(2p1q1 + 2p2q2)
The reduction in heterozygosity that results from partition of the total pop-

ulation into two subpopulations that have different allele frequencies is given
by

Hs - Ht

= 2p̄ q̄−(p1q1 + p2q2) = 2× 1
2 (p1 + p2) . 12 (q1 + q2)−(p1q1 + p2q2) = 1

2 (−p1q1 + p1q2 + p2q1 − p2q2)

= 1
2 [p1 (p1 − p2)− p2 (p1 − p2)] = 1

2 (p1 − p2)
2

f =
Ht −Hs

Ht
=

1
2 (p1 − p2)

2

2p̄ q̄
=

1
4 (p1 − p2)

2

p̄ q̄

1.13.4 ParentoforiginforX−linkedmutations

Haldane (1947), showed that almost all males affected with classical X-linked
haemophilia had inherited the mutation from a mother who was a heterozygous
carrier of the mutation. He compared this to the theoretical prediction that
if the mutation rate were the same in both sexes, two-thirds of affected males
would have inherited the mutation from a carrier mother (rather than from a
mutation in a germ cell inherited from the mother).

Subsequent work has supported Haldane’s conclusion that most mutations
for classical haemophilia are of paternal origin.

Almost half of the mutations causing classical haemophilia are caused by X
chromosome inversions that for some reason occur in males far more commonly
than in females.
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