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Statistical definition of genetic stratification

• Population is stratified if there are allelic 
associations between unlinked loci
– Allelic associations generated by stratification are 

independent of map distance
– associations generated by admixture or drift decay 

with map distance 

• Stratification is not eliminated by a single 
generation of random mating
– unlike Hardy-Weinberg equilibrium which holds 

after one generation of random mating



Statistical model-based definition of genetic 
admixture

• Admixture between K subpopulations with 
different allele freqs generates gametes that are a 
mosaic of segments with ancestry from each 
subpopulation

- allelic associations decay with map distance
- these allelic associations are explained by a model 

based on a mosaic of segments from K 
subpopulations

- contrast with stratification which gives rise to allelic 
associations that are independent of map distance 



Why stratification and admixture usually co-exist

• Where there is stratification, some gene flow 
between subpopulations is likely to occur unless 
social / geographic barriers are very strong

• Stratification within an admixed population is 
often maintained by continuing gene flow, or by 
social stratification 

• Possible scenario for admixture without 
stratification: pulse of admixture followed by 
random mating in an island population 



Quantifying genetic stratification

• F
st
: fixation index subpopulation-total

– Ratio of average allelic variance in subpopulations to 
allelic variance in ancestral total population

– Can be computed for 2 or more subpopulations, or 
conditional on a continuous variable

– F
st
 between inbred strains is 1.   

• F
st
 between human continental groups ~ 0.05 to 

0.15

• F
st
 between European subpopulations ~ 0.005



How population stratification may confound 
genetic associations with phenotype

• If C lies on a pathway from which causal 
information flows to exposure X and disease D, 
C is a confounder of the association between X 
and D

• If subpopulations differ in disease risk for 
environmental or genetic reasons, any genetic 
variant X that has different frequency in 
subpopulations will be associated with disease 
D

• Extreme example: association of lactase gene 
polymorphism with height in European-
Americans



How important is it to control for 
confounding by population stratification?

• In populations formed by gene flow from 
different continental groups (e.g. Mexicans), 
stratification can be strong 
– Confounding effects are usually weak unless 

marker shows large variation between 
subpopulations 

• When trying to detect small genetic effects (< 
1% of variance), even weak stratification may 
be enough to confound associations
– almost all genetic association studies now focus on 

small effects



Controlling for confounding by population 
stratification

• Classical approaches: 
– restrict to homogeneous population, stratify by 

demographic variables

• Family-based designs
– study transmission of gene copies from heterozygous 

parents

• Measure the confounder and adjust for it
– model stratification as a mixture of subpopulations 

(“structured association”)
– principal components analysis to infer latent 

variables that generate associations between unlinked 
loci



•Statistical modelling of stratification

• Applications: investigate genetic structure of 
population, or control for stratification as a 
confounder

• Two possible approaches
– Use principal components analysis, retaining K-1 

principal components that summarize allelic 
associations between unlinked loci

– Fit standard model of admixture and stratification 
with K subpopulations (ADMIXMAP, 
STRUCTURE, ANCESTRYMAP)

• Compare models with different values of K



Principal components analysis

• M variables measured on N individuals
• Rotate the M axes to define M latent variables 

(principal components) that are linear 
combinations of the original variables
– 1st component is axis that maximizes proportion of 

variance explained
– 2nd component is axis that maximizes proportion of 

residual variance explained, and so on

• Principal components are evaluated as 
eigenvalues and eigenvectors of covariance 
matrix



Eigenvalues, eigenvectors and principal 
components

• For efficient computation, can use the N x N 
matrix of covariance between persons

• With N individuals typed at M loci (M > N), the 
covariance matrix has  N eigenvalues and N 
eigenvectors

• Eigenvalues are positive numbers proportional to 
variance accounted for by each PC. 

• Eigenvectors are vectors of weights defining the 
rotation to new coordinates
– used to compute PC scores for each individual 



Principal components analysis with genome-wide 
marker panels (Patterson 2006)

• Regress genotype at locus t on genotypes at loci 
t, t-1, ...  

• Use residuals from these regression models to 
calculate covariance matrix for genotypes
– adjustment in regression model eliminates most 

short-range allelic associations generated by 
haplotype structure 

• Use this covariance matrix for a principal 
components analysis



EIGENSTRAT with 500K tag SNPs: mean average 
weight of 500-SNP windows on first six principal 
components



Eliminating artefactual principal components to 
detect stratification only 

• Thin the marker panel to obtain a panel of SNPs 
that are not in strong LD with each other 
(PLINK option --ldpruned) 

• Regress genotype at locus t on genotypes at loci 
t, t-1, ...  

• Drop clumps of markers that contribute strongly 
to one principal component (e.g. HLA region)

• Exclude related individuals (detected in N x N 
covariance matrix between persons)



Principal components analysis as a statistical 
model

• M observed variables are modelled as linear 
combinations of C independent (unobserved)  
gaussian variables, plus noise

• Can infer the number C of principal components 
required to account for the observed covariance 
matrix

• All rotations of the C axes are equally 
compatible with the data 
– contours of multivariate gaussian are spherical



Testing how many principal components to retain

• Can calculate test for stratification based on 
proportion of variance explained by first 
principal component (largest eigenvalue)
– repeat for next component until test is not significant

• For N individuals typed at M loci, stratification 
can be detected if F

ST
 > 

– to detect two subpopulations with F
ST 

~ 0.001 

requires M N > 106 

• Each individual can be assigned coordinates in a 
K-1 dimensional space

1/M N



Scatter plot of scores on first two principal 
components in 6000 Europeans typed with 
300K SNPs (Heath 2008)



“Structured association” or principal components 
for modelling admixture?

• Use principal components where 
– F

ST
 distance between subpopulations is small (< 0.01) 

– genome-wide markers have been typed but markers 
informative for ancestry cannot be pre-selected

• Use structured association where
– F

ST
 distance is large

– markers informative for stratification can be 
preselected

– you want to model admixture



Practical implications of availability of statistical 
methods to control for population stratification

• Family-based designs are unnecessary
– impractical for late-onset disease

• Strict population-based sampling of cases and 
controls is unnecessary
– multiple case collections can use a shared control 

group
– selection bias with respect to demographic 

background is eliminated by controlling for genetic 
background as if it were a confounder

– in general this approach to controlling selection bias is 
valid where selection is not on factors that lie in the 
causal path between exposure and disease



Applications of statistical modelling of population 
admixture

• Admixture mapping
– localizes genes in which risk alleles are distributed differentially between 

ethnic groups

• Investigating relation of disease risk to individual admixture 
proportions
– to distinguish genetic and environmental explanations of ethnic variation 

in risk

• Controlling for population stratification in genetic association 
studies
– eliminates confounding except by alleles at linked loci

• Fine mapping of genetic associations in admixed populations
– to eliminate long-range signals generated by admixture



Distinguishing between genetic and 
environmental explanations for ethnic differences 
in disease risk

• Migrant studies: 
– consistency of  high or low risk in varying 

environments
– trend of risk ratio with number of generations since 

migration
– failure of environmental factors to account for 

ethnic difference

• Relation of risk to proportionate admixture
– may be confounded by environmental factors



Ethnic differences in disease risk that (on the basis of 
migrant studies) are unlikely to have a genetic basis

• Japanese-European: breast cancer, colon 
cancer, coronary heart disease 
– after 1-2 generations risk in Japanese migrants 

equals risk in US Whites

• African-European: multiple sclerosis 
– low risk in Europeans who migrated to South 

Africa before age 12



Type 2 diabetes: prevalence in South Asian migrants 
and their descendants

Age Prevalence
First-generation migrants
1991 England 40-64 19%

> 5 generations since migration from India 
1977 Trinidad 35-69 21%
1983 Fiji 35-64 25%
1985 South Africa 30- 22%
1990 Singapore 40-69 25%
1990 Mauritius 35-64 20%



Type 2 diabetes: effect of gene flow from 
European males into a high-risk population 
(Nauruan islanders) 

% with European HLA types
Age                  Diabetic  Non-diabetic

20-44 6% 12%
45-59 9% 13%
60 + 5% 55%

Odds ratio for diabetes in those with European 
admixture = 0.31 (95% CI 0.11 - 0.81)

Serjeantson SW. Diabetologia 1983;25:13



Relation of risk of systemic lupus erythematosus 
to individual admixture in Trinidad (Molokhia 
2003)

• 44 cases and 80 controls resident in northern Trinidad 
(excluding those with Indian or Chinese ancestry)

• Admixture proportions of each individual estimated 
from genotypes at 31 marker loci 

Risk ratio (95% CI) for unit
change in African admixture 

Unadjusted 32.5 2.0 - 518
Adjusted for socioeconomic 
status 28.4 1.7 - 485



Exploiting admixture to map genes

• Admixture mapping: infer ancestry at marker locus (0, 
1 or 2 copies from the high-risk population) then test 
for association of ancestry with the trait or disease   
– analogous to linkage analysis of an experimental cross 

• Testing for allelic association (Chakraborty & Weiss 
1988, Stephens et al. 1994 “MALD”) does not fully 
exploit the information about linkage that is generated 
by admixture
– efficiency of MALD is limited by information content for 

ancestry of individual markers ( < 40%)
– cannot use affected-only design



Statistical power of admixture mapping

• Required sample size is determined by the ancestry 
risk ratio (r)
– ~800 cases required to detect a locus with r = 2
– ~3000 cases required to detect a locus with r = 1.5
– assuming that: 

• a dense panel of ancestry informative markers is available
• admixture proportions from the high-risk population are between 

20% and 70%

• Affected-only test of N individuals has same statistical 
power as case-control test of 2N cases and 2N controls



Advantages of admixture mapping in comparison with 
other approaches to finding disease susceptibility genes

• Statistical power
– admixture mapping relies on direct (fixed-effects) 

comparison
– family linkage studies rely on indirect (random-effects) 

comparison
• Number of markers required for a genome search 

– ~ 2000 ancestry-informative markers for a genome search, 
compared with > 300 000 markers for whole-genome 
association studies

• Effect of allelic heterogeneity
– does not matter whether there are many rare risk alleles or 

only a few common risk alleles at the disease locus



Recent admixture between low-risk and high-
risk populations

Founding Generations
populations since

 admixture
Caribbean, USA W African/European 2 – 15
Australia Native Aus./European 6 - 8
Americas Native Am./European 2 - 15
Pacific islands indigenous/European
Alaska,Canada, 
Greenland Inuit/European ?10
East Africa Arab/E African ~ 15-20?



Diseases amenable to admixture mapping in 
populations of west African/European descent

Disease/trait Risk difference

Hypertension

Systemic lupus erythematosus

Prostate cancer

Keloid scarring

Sarcoidosis

Focal segmental glomerulosclerosis

Commoner in west
Africans

Alzheimer disease

Coronary disease / dyslipidaemia

Lower risk in west
Africans

Osteoporotic fractures



Diseases amenable to admixture mapping in 
other populations
Disease/trait Type of admixture

Type 2 diabetes Native American/European, 
Pacific islander/European,
Native Australian/European
Peninsular Arab/east African

Rheumatoid arthritis Native American/European

Generalized obesity Pacific islander/European,
Native American/European

Central adiposity South Asian/west African

Dyslipidaemia/coronary
disease

South Asian/west African



An experimental cross between inbred strains

21 1 1
Gene copies 
from strain 0 0

 

F1 generation 

F2 
generation



Methodological problems of extending linkage 
analysis of a cross to admixed human populations

• History of admixture is not under experimental control 
or even known
– population structure generates associations with ancestry at 

loci unlinked to the trait

• Ancestral populations are not available for study
– cannot sample exact mix of west African populations that  

contributed to the African-American gene pool

• Human ethnic groups are not inbred strains: FST ~ 0.15

– markers with 100% frequency differentials are rare
– cannot unequivocally infer ancestry at locus from marker 

genotype



Statistical methods that allow linkage analysis of 
a  cross to be extended to admixed humans

Problem How to overcome it

History of admixture
is not under
experimental control

Condition on parental admixture
proportions to eliminate associations
with loci unlinked to the trait

Human ethnic groups
are not inbred strains

Combine data from all markers in a
multipoint analysis to extract
information about ancestry at each locus

Ancestral populations
are not available for
study

Re-estimate ancestry-specific allele
frequencies within the admixed
population, with priors based on sampling
unadmixed modern descendants



Model for stochastic variation of ancestry on 
chromosomes inherited from an admixed parent

1 1 1 1 22 2

Hidden states: states of ancestry at marker loci on 
chromosome of mixed descent

Observed data: marker alleles at each locus

Stochastic variation between K states modelled as sum of K 
independent Poisson arrival processes

Total arrival rate (sum of intensities) can be interpreted as 
the effective number of generations back to unadmixed 
ancestors



Multipoint inference of ancestry at marker 
loci from genotypes

1 1 2 1 22 2

• Hidden Markov model (HMM) message-passing 
algorithm yields posterior marginal distribution of 
ancestry states at each locus, given genotypes at all 
loci on the chromosome 

• Information about locus ancestry  depends on 
marker allele frequencies and marker density

1 1 111 1



Hidden Markov models based on independent 
Poisson arrival processes: applications in genetics
• Linkage analysis with Haldane mapping function: 2 

independent Poisson arrival processes each with 
intensity 1 per morgan (by definition)

• Admixture: K independent Poisson arrival processes 
with total intensity (effective number of generations 
since admixture) inferred from data

• Phasing and imputation: H independent Poisson arrival 
processes with total intensity varying across genome 
– IMPUTE, MACH: H=120 known haplotypes in 

HapMap)
– fastPHASE: H ~ 8 modal haplotypes (not fixed)



Hidden Markov model algorithms for this class of 
models

• Matrix of transition probabilities has a regular 
structure that allows fast computation
– Poisson arrival process implies exponential waiting 

times

• Standard algorithms can compute
– Likelihood of model parameters given observed data
– Posterior distribution of hidden states (segregation 

indicators, locus ancestry or haplotype) at each locus



Null hypothesis as 
graphical model

Paternal  
locus 
ancestry [i,j]

Maternal  
locus 
ancestry 
[i,j]

genotype [i,j]

 j th  locus

i th individual
Paternal 
gamete  
admixture [i]

Maternal 
gamete 
admixture [i] 

Population 
distribution of 
admixture in parental 
generation

Subpopulation-
specific haplotype 
frequencies [j]

trait measurement [i]

Regression 
parameters 

covariates [i]

Arrival 
process 
intensity 
parameter

haplotype 
pair[i,j]



Statistical approach to model fitting

• Bayesian model of null hypothesis: all observed and missing 
data are random variables
– Observed data: genotypes, trait values, covariates
– Missing data:- 

• model parameters (admixture proportions, arrival rate)
• locus ancestry states 

• Posterior distribution of model parameters is  generated by 
Markov chain Monte Carlo (MCMC) simulation

• For each realization of the model parameters, marginal 
distribution of locus ancestry is calculated by an HMM 
algorithm

• Three programs based on this approach are currently 
available: ADMIXMAP, ANCESTRYMAP, STRUCTURE



Limitations of the standard statistical model

• Assumption of no LD between markers within ancestral 
subpopulations limits marker density to 1 per cM. 

• Alternative approaches: 

• SABER:  standard model extended to allow for 1st-order LD 
between loci

• HAPMIX: Model admixed gametes as mosaic of haplotypes in 
HAPMAP source populations

• LAMP: sliding window of SNPs to reconstruct most likely 
ancestry state of individuals within each window. 



Alternative approach to modelling locus ancestry: 
HAPMIX

• Extension of methods for imputing genotypes at 
untyped HAPMAP loci from tag SNP 
genotyping arrays (MACH, IMPUTE)

• Requires phased haplotype data sampled from 
the two ancestral populations

• Target gametes (admixed) are modelled as 
mosaics of the source haplotypes (phased data 
from HAPMAP or similar).  
– copying from source to target is allowed to be noisy



Another approach to detecting admixture with 
genome-wide SNP data: LAMP (Sankaraman 
2008)

• Sliding window of SNPs
– window must be short enough that most individuals 

do not have an ancestry breakpoint within the 
window

• Within each window, cluster individuals 
according to most likely ancestry state (3 states 
with 2-way admixture model

• Can use ancestry-specific allele frequencies if 
known, or learn weights from the data (principal 
components analysis would work).   



High-density (HAPMIX, LAMP) versus standard 
approach to admixture modelling (ADMIXMAP, 
ANCESTRYMAP)

• Advantages of HAPMIX, LAMP
– Can use all SNPs on a genotyping array

• no need to select panel of ancestry-informative markers

– higher proportion of information extracted

• Disadvantages of HAPMIX, LAMP
– Posterior probs of locus ancestry are not correctly 

calibrated: statistical tests that depend on averaging 
over posteriorprobs will behave strangely

– Limited to 2-way admixture and to unrelated 
individuals



Combining high-density methods (HAPMIX, 
LAMP) and low-density (ADMIXMAP, 
ANCESTRYMAP) methods

• use HAPMIX/LAMP with all SNPs to infer 
locus ancestry

• thin these inferred locus ancestry states to 
spacing of 1 per cM, and code them as 
pseudo-genotypes

• run ADMIXMAP with these pseudo-
genotypes, and allow program to learn 
pseudo-allele freqs



Statistical approaches to hypothesis testing

• Null hypothesis:  = 0 (where   is the log ancestry risk ratio 
generated by the locus under study)    

• By averaging over the posterior distribution of missing data 
under the null, we can evaluate two types of test:- 

• Likelihood ratio test (implemented in ANCESTRYMAP): 
– evaluates L( ) / L(0)

– averaging over prior on   yields Bayes factor (ratio of integrated 
likelihoods) for an effect at the locus under study compared with the null

– averaging over all positions on genome yields Bayes factor for an effect 
somewhere on the genome compared with the null

• Score test (implemented in ADMIXMAP): 
– evaluates gradient and second derivative of log L( ) at  = 0 , to obtain 

a classical p-value



Evaluation of score test by averaging over 
posterior distribution of missing data

• For each realization of complete data, evaluate:
– score (gradient of log-likelihood) at  = 0 

– information (curvature of log-likelihood) at  = 0

• Score U = posterior mean of realized score
– Complete info = posterior mean of realized info
– Missing info = posterior variance of realized score

• Observed info V = complete info – missing 
info

• Test statistic = UV-½ 



Advantages of the score test algorithm (compared 
with likelihood ratio) 

• All calculations are at  = 0
– computationally efficient, no ascertainment problems

• Meta-analyses are straightforward: just add the score 
and information across studies

• Ratio of observed to complete information provides a 
useful measure of the efficiency of the study design

• Can be used to calculate model diagnostics: 
– test for departure from Hardy-Weinberg equilibrium
– test for residual LD between pairs of adjacent marker loci



Information about ancestry conveyed by a 
diallelic marker

f=
pX−pY 

2

4 p 1−p 

40% ancestry information content (f  = 0.4)  is equivalent 
to allele frequency differentials of about 0.6

Marker allele 1 has ancestry-specific frequencies pX, pY 
given ancestry from populations X, Y respectively 

In an equally-admixed population, the proportion of 
Fisher information about ancestry of an allele (X or Y by 
descent) extracted by typing the allele is

p=
1

2
pXpY where



How many markers are required for genome-wide 
admixture mapping?

• Simulation studies based on typical African-
American population: 80%/20% admixture, 
sum of intensities 6 per 100 cM, markers with 
36% information content for ancestry 
– 64% of information about ancestry is extracted with 

markers spaced at 3 cM 
– 80% of information about ancestry is extracted with 

markers spaced at 1 cM



Panels of ancestry-informative markers

• Assembly of a panel of ~ 3000 ancestry-informative 
markers (AIMs) requires screening several hundred 
thousand SNPs for which allele frequency data are 
available

• Marker panels are now available for 
– west African / European admixture (Smith 2004, Tian 2006)
– Native American / European admixture (Mao 2007, Tian 

2007, Price 2007)



Percent information extracted in Mexico diabetes 
study: ADMIXMAP with ancestry informative 
markers, HAPMIX with tag SNP array



Mexico City diabetes admixture mapping study: 
affected-only tests for linkage shows excess Eur 
ancestry in HLA region



Do admixture mapping studies require a control 
group? 

• Affected-only design is the most efficient if model 
assumptions hold

• Control group is useful:-
– as a source of unbiased information on allele frequencies
– as a sanity check, and specifically to test the assumption of 

no ancestry state heterogeneity across the genome
– for subsequent fine mapping 
– Control data from studies of other disease in the same 

population can be re-used



Successes with admixture mapping

• Detection of disease genes
– APOL1 identified as underlying cause of differential 

susceptibility to focal segmental glomerulosclerois and to 
(possibly misdiagnosed) hypertensive kidney disease in 
African-Americans (Kopp 2008)

• apolipoprotein L1 has trypanolytic activity ? selection
– Ancestry peak on chr 17q for sarcoidosis in African-

Americans: tentatively identified as XAF1
• Identification of QTLs

– Detection of a functional SNP in SLC24A5 that accounts for 
~25% of European/African difference in skin melanin 
content (Lamason 2005)

– Detection of a functional SNP in IL6R that accounts for 33% 
of variance in interleukin 6 soluble receptor levels (Reich 
2007)



Fine mapping in admixed populations

• For fine mapping, conditioning on locus ancestry so as 
to eliminate long-range signals generated by admixture

• Standard model of admixture requires minimal spacing 
of 0.5 cM to ensure no residual association between 
marker loci
– For inference of locus ancestry (as in admixture mapping), 

~3000 ancestry-informative markers are sufficient 

• For fine mapping with ~500 000 tag SNPs, we can 
model all loci but omit feedback of information about 
locus ancestry from all but a subset of ~3000 AIMs 



Other applications of statistical modelling of 
admixture / stratification

• Admixture mapping in outbred animal 
populations
– livestock, heterogeneous stocks of mice

• Inferring the genetic background of an 
individual
– forensic applications, restricting samples by 

genetic background, classification of domestic 
animals and livestock



Revision exercises: stratification

• How is genetic stratification defined? 
• What size of stratification effect (Fst) 

attributable to a single component could be 
detected with 105 thinned SNPs (not in short-
range LD)  typed in 1000 individuals?

• What steps are necessary to eliminate artefacts 
when using principal components to correct for 
genetic stratification? 
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