
  

Implications of studies of SNP genotype 
covariance for prediction from genotypes

● Most of the genetic variance of complex traits is 
accounted for by additive (linear) effects of 
common SNPs

● It is therefore possible in principle to predict 
these traits from linear models based on 
common SNPs

● Most SNP-trait effects are so polygenic (tiny 
effects of many SNPs) that to learn such 
models from genotype-trait associations may 
require unrealistically large sample sizes



  

Prediction from high-dimensional data
● Dimensionality reduction

– Principal components analysis (PCA) for 
correlated variables

– Summary scores learned from data

● Non-parametric methods
– learn a function (kernel) that evaluates the 

similarity between pairs of observations

● Sparse priors (e.g. LASSO regression)
– encode prior belief that effects are mostly 

small or near zero

– sparsity parameter can be learned from data



  

Using allele scores to predict outcome

● Allele scores can be computed from 
summary results of a GWAS

● (1) filter  SNPs to select those that have p-
value below some threshold

– can be less stringent than the conventional 
threshold for declaring genome-wide 
significance

● (2) Calculate individuals'scores as sum of 
filtered SNP genotypes weighted by the 
regression coefficients

– Use this score as a predictor



  

International Schizophrenia Consortium 
(2009): prediction of schizophrenia in 

independent samples from allele scores



  

LASSO regression
● Least Absolute (value) Shrinkage and Selection 

Operator

● Standard regression programs maximize log-
likelihood (probability of data given model) as a 
function of regression coefficients β

● LASSO regression maximizes
log-likelihood - λ Σ | β

i 
|, where λ is a parameter 

controlling sparsity

– best value of λ is learned by cross-validation 
against withdrawn observations

– value of λ determines how many variables are 
retained in the model (non-zero coefficients)



  

Bayesian interpretation of LASSO 
regression

● LASSO regression is equivalent to 
specifying a prior belief that large effects 
are less probable than small effects, and 
many effects are close to zero 

– Specifically, the LASSO penalty is 
equivalent to double exponential priors 
on the regression coefficients) 

–  λ is a scale parameter that controls the 
strength of the prior: large values force 
regression coefficients towards zero. 



  

LASSO regression and the double 
exponential prior

● Parameter λ specifies 
the strength of the 
prior (penalty for large 
effect sizes)

– learned from data by 
cross-validation



  

How double exponential prior encodes 
sparsity

● Contour plot of 2D 
probability density 
looks like pyramid
– Contour plot of 

gaussian density 
would be 
concentric circles

● Density varies 
inversely with sum 
of absolute values 
of effect 
parameters



  

Why do we need to use cross-validation to 
learn and evaluate a predictive model?

● To evaluate predictive performance 
– on test data that have never been used to 

learn the model

– no need for a separate validation study (but 
may be hard to convince reviewers / 
regulatory agencies of this)

● To tune the learning algorithm
– Optimal number of variables to retain

– More generally, learn parameters that control 
how much the model adapts to the data

– Models that adapt too much will overfit



  

Using cross-validation to learn the number 
of SNPs retained (controlled by sparsity 

parameter) by LASSO regression 



  

N-fold cross-validation

● Partition dataset into N disjoint test folds
● For each test fold, all other observations are the 

corresponding training set

● For each test/training fold
– a model is fitted to the training fold and 

predictions are evaluated on the test fold

– Predictive performance is evaluated by 
summing over all test folds

● For each observation, can compare observed 
value with value predicted from model fitted to 
the corresponding training fold

● Can compute area under ROC curve
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With 4-fold cross-validation, each  
observation appears in one test fold 
and in 3 training folds

Cross-validation compared with a 
conventional test/training split
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If we are using cross-validation to 
tune the model and also to 
evaluate predictive performance, 
we need nested cross-validation.

Inner folds are used to tune the 
model (e.g. learn the optimal 
setting of the LASSO penalty 
parameter

Outer folds are used to evaluate 
performance of the tuned model

With 10-fold cross-validation, 
nested cross-validation requires 
100 model fitting runs

Nested cross-validation



GWAS of 25 protein biomarkers 



Genotypic prediction of 25 protein biomarkers

Protein Proportion of variance explained by 
allele score, filtered at 50000 SNPs

Proportion of 
variance 
explained by  
LASSO

Number of SNPs retained in 
LASSO (mean over training 
folds)

FETUIN 0.071 0.327 140

VEGF 0.003 0.250 48.3

MCP-1 0.002 0.229 23.1

OPN 0.053 0.217 443

EOTAXIN-1 0.008 0.198 42.1

MIP1BETA 0.020 0.143 90.2

IL-1 RA 0.021 0.113 23.2

MMP9 0.017 0.093 919.8

FACTORVII 0.003 0.089 25.8

IL1ALPHA 0.005 0.084 17.1

TNFALPHA 0.002 0.071 13.4

MMP3 0.002 0.069 15

IL-18 0.026 0.065 78.1

IL-10 0.005 0.060 1049.1



  

The future of genotypic prediction

● Allele scores can be computed from 
summary level meta-analyses which are 
available for very large datasets

● LASSO predictors outperform allele scores 
but constructing them requires access to 
individual-level data

● Genotypic effects on biomarkers are more 
oligogenic than effects on disease

– Can learn genotypic predictors of 
biomarkers from cross-sectional studies, 
then use them as “features” to construct 
disease predictors 



  

Using genetic variation to infer causal 
biomarker-disease associations

Bayesian instrumental variable analysis

● “-omic” epidemiology yields many phenotypic 
biomarkers that predict outome

– metabolic measurements, gene expression 
levels, serum proteins

● We want to infer which biomarker-disease 
associations are causal

– possible therapeutic targets

– as surrogate end-points in early-stage clinical 
trials



  

Classical epidemiological approach to 
inferring causation from an exposure-

disease association
●  Measure all likely confounders: factors that are 

independently associated with outcome
● Test whether exposure-disease association 

persists after adjusting for these confounders
● Control of confounding is likely to fail with 

biomarkers because the likely confounders are 
unknown or difficult to measure

– for instance raised cytokine levels predict age-
related cognitive impairment – but are affected 
by underlying disease processes 



  

Control of confounding: epidemiology faces 
its limits

● Standard methods for control of confounding in 
epidemiological studies are likely to fail if the 
exposure under study is:-

● A biomarker: e.g. an inflammatory marker
– Association with outcome may be confounded 

by unknown metabolic/physiologic factors

● A health-seeking behaviour: e.g. use of vitamin 
E supplements, post-menopausal oestrogen

– Association with outcome may be confounded 
by other health-seeking behaviours

●



  

Why does control of confounding fail for 
“endogenous” variables?

● Biomarkers: 
– confounders are unknown

– Temporal sequence from exposure to outcome 
is difficult to establish: reverse causation is 
possible

● Behavioural factors
– confounding is likely to be strong for a 

disease/outcome where risk can be modified 
by “lifestyle” factors

– Measurement of exposure is often biased



  

Instrumental variable analysis

● Identify an “instrument” that perturbs the 
exposure of interest (usually a biomarker or 
behavioural factor) 

● Assumptions:- 
– Effect of instrument on outcome is 

unconfounded

– Any effect of instrument on outcome is mediated 
through the intermediate variable. 

– Effects of setting different levels of exposure are 
independent of the instrument 



  

Instrumental variable analysis in economics

● Economists want to infer the effects of 
“endogenous” (intermediate) variables that are 
likely to be confounded

● Example
– age at leaving school is an “endogenous variable” 

that predicts lifetime earnings

– variation in statutory school-leaving age can be 
used as an instrument 

– can estimate the causal effect of  extra year's 
school on outcome



  

Conditional independence in graphs

● Rules of conditional probability give 
P(x, y, z) = p(x | z) p(y | x) p(x)

● z and y are dependent, but conditionally 
independent given x

z x y



  

Graphical definition of a confounder

● Confounder of association between x and y is 
any variable on a pathway from which 
information flows to x and y

● information flow is defined by introducing a do-
operator (equivalent to a latent instrumental 
variable z) 

– Information cannot flow backwards in time

z x y

c



  

Inferring causation from conditional 
independence in graphs

● Causal 
relationship: y 
depends on z

 
● Confounding: 

no information 
flow between z 
and y

z x y

z x y

c



  

Classical approaches to causal inference

● Experimentalists: causal relationships can be 
inferred only from randomized intervention

● Structural causal model (Pearl): causation can 
be inferred if one of three conditions holds

– an instrumental variable has been measured 
(randomization is a special case)

– all confounders have been measured (back-
door criterion)

– an unconfounded variable on the causal 
pathway has been measured (front-door 
criterion



  

Bayesian approach to causal inference

● Simple explanations, involving only a few 
parameters that are learned from the data, are 
more probable than explanations that invoke 
many parameters learned from the data

– The probability of data given the model is the 
likelihood of the model

– The weight of evidence favouring one model over 
another is the difference between the logs of 
their likelihoods (or equivalently the log-
likelihood ratio

–



  

How Bayesian hypothesis testing favours 
the simplest explanation that fits the data: 

Mackay 2003

● How many boxes 
are behind the tree? 



  

Smoking and lung cancer debate in 1950s
● Classical statisticians' argument: 

– any inference of causation from observational 
data is unreliable

– how do you know that all relevant confounders 
have been measured? 

● Epidemiologists' argument
● even without experimental confirmation, 

evidence from observational studies can 
strongly favour causation



  

Bradford Hill criteria: how to infer causation 
where classical criteria are not met

● Strength of association
● Temporal sequence
● Consistency
● Biological plausibility
● Coherence
● Specificity in the causes
● Dose-response relationship
● Experimental evidence
● Analogy



  

“Mendelian randomization”: instrumental 
variable analysis with genetic instruments

● Find genes in which variation perturbs levels of 
the biomarker. Compare effects on outcome of

– genetic perturbation of the biomarker

– non-genetic variation of the biomarker

● Example: 
– raised plasma fibrinogen predicts cardiovascular 

disease

– genotype in the beta-fibrinogen gene predicts 
fibrinogen levels

– genotypic effects on fibrinogen levels do not predict 
cardiovascular disease



  

Assumptions underlying instrumental 
variable analysis with genetic instruments

● Effect of genotype on outcome is unconfounded
– guaranteed by Mendel's laws, if  population 

stratification is controlled

● Effect of genotype on outcome is mediated only 
through the intermediate phenotype (no 
pleiotropy)

● To be able to generalize: effects on outcome of 
different settings of the biomarker are 
independent of the instrument
– no developmental compensation / channelling



  

Instrumental variable estimate of causal 
effect size

● Two-stage method
● regress  intermediate variable x on genotype g 

to evaluate predicted values of x given 
genotype: <x|g>

– can use cross-sectional studies with 
measurements of x and g only. 

● regress outcome y on the predicted values <x|
g>: valid for logistic regression

– can use case-control studies with 
measurements of y and g only



  

Is the association of alcohol intake with 
colorectal cancer causal? (Wang 2010)

● ALD2 polymorphism:  487Lys allele impairs 
metabolism of acetaldehyde, causing flushing 
and other symptoms in response to alcohol.  

● allele frequency ~ 0.25 in East Asia
● Meta-analysis of 1960 cases and 3163 controls 

in Japan and China
● Odds ratio for colorectal cancer was 1.3 in 

Glu/Glu homozygotes versus Lys/Lys 
homozygotes



  

Do raised homocysteine levels cause 
coronary heart disease? 

● Raised homocysteine levels are associated 
with CHD

● TT genotype in the MTHFR gene is associated 
with reduced folate-dependent enzyme activity 
and with 20% higher homocysteine levels

● Clarke 2012: in meta-analysis of 48175 CHD 
cases and 67961 controls, odds ratio for CHD 
associated with TT genotype was 1.02 



  

Does being fat cause psychological 
distress? (Lawlor 2011) 

● BMI and waist/hip ratio are associated with 
questionnaire measures of psychological 
distress in the population

– 53221 adults in Copenhagen

– odds ratio 1.1 for “not accomplishing very much” 
for increase of 1 SD in BMI or WHR

● 2 SNPs in FTO (fat mass & obesity-related) and 
MC4R (melanocortin 4 receptor) as instruments 
for adiposity effect

– Causal odds ratios 0.6 (0.46-0.89) for effect of 
BMI and 0.5 (0.25-0.94) for WHR



  

Are effects of FTO and MC4R variants on 
psychological distress mediated only 

through adiposity?  

● Compare causal effects estimated using 2 
instruments

● “Over-identification” test: test for residual 
associations of SNPs with psychological 
distress in a model that includes predicted level 
of adiposity given genotype.  

● Multiple instruments allow you to test the 
assumption of no pleiotropy in a standard 
instrumental variable analysis



  

Summary: standard approach to exploiting 
Mendelian randomization

● For the intermediate trait of interest, try to find 
one or two genes that have moderately large 
effect, where pleiotropic effects can reasonably 
be excluded

● Calculate the predicted values of the trait given 
genotype in a cross-sectional study

● In a large case-control study, test for 
dependence of outcome on the predicted value 
given genotype

● If there are > 2 instruments, test for pleiotropy



  

Summary: future methods for exploiting 
Mendelian randomization

● Most genetic effects are polygenic: construct 
predictions of trait or biomarker from many 
SNPs (not necessarily intragenic)

– Can use cross-sectional studies of genotype-
trait associations

● Model causal effects on outcome using 
genotypic predictors of traits/biomarkers

– Can use large case-control studies of outcome

● Where genotypic predictor is associated with 
outcome, evaluate causality or pleiotropy as 
alternative explanations



  

Association of LASSO genotypic predictors 
with CVD in an independent sample

protein beta pvalue

Factor VII 61.9 0.0001

SCF -441.3 0.03

BDNF 509.6 0.03

EOTAXIN1 35.1 0.03

MCP1 10.5 0.07

MMP9 -267.3 0.17

IL8 72.3 0.18

● Supports causal explanation of observed 
association of Factor VII with CVD 
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