
Genetic epidemiology: association and 
prediction

• Uses of genetic association studies
• Genome-wide association studies

– Cross-sectional, case-control, cohort
– Haplotype structure, tag SNPs and imputation
– Controlling for population stratification 
– Criteria for declaring association

• Why do confirmed SNP associations 
explain only a small fraction of the genetic 
variance (“missing heritability”)?

• Prediction of clinical outcome from 
genotypes



Uses of genetic association studies

• Understanding molecular basis of disease
– But molecular mechanism of a SNP-disease 

association may not be obvious: variant may alter 
transcription at distant site 

• Prediction of disease risk or response to 
treatment
– prediction of complex traits from genotype is 

difficult

• Inferring causal relationships by exploiting 
genotype as a randomized “instrument”
– Requires a genotypic predictor of at least modest 

effect



Methodological differences between studies of 
genetic and environmental risk factors 

Genetic factors Environmental factors
Bias in measurement of exposure (genotype)
is eliminated in correctly-designed studies

Bias in measurement of exposure (e.g.
dietary intake) is often difficult to
eliminate

Exposure (genotype) can be measured
retrospectively: case-control designs are
usually the approach of choice

Measurements of exposure may be
affected by disease onset: prospective
cohort studies are often necessary

Selection bias less serious: can usually be
dealt with by controlling for population
stratification

Selection bias can be difficult to
eliminate, especially in case-control
studies

Only possible confounders of an association
with genotype are:- 

(i) population stratification – which can be
controlled in the design or analysis

(ii) haplotypes – can exploit this confounding
using tag SNPs

Confounding is a serious problem –
often impossible to control adequately



Design of genetic association studies

– Case-control study: most powerful design for 
studying genotype-disease associations

• Allows accurate outcome classification: e.g. can 
ensure that stroke cases have CT scans to classify 
subtype

– Cross-sectional study: can study biomarkers and 
other quantitative traits

– Cohort study: can model genotype, biomarkers 
and disease jointly 

• Not powerful enough for discovery of genotype-
disease associations

• Can model genotypes, biomarkers and outcome 
jointly



Haplotype structure: example



How constraint of population size leads to 
association of disease with haplotypes
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Haplotype structure: example



Haplotype reference panels 

• HapMap: ~3 million common SNPs typed in 
samples from three continental groups

• 1000 Genomes project: deep sequencing on 
2504 individuals from 14 populations across 5 
continents 
– Each individual's genome is repeatedly chopped into 

short (~200 bp) near-random fragments that are 
sequenced and aligned to reference sequence

– combines variant discovery and genotyping
– ~ 30 million common SNPs typed



Imputation of common 1000G SNPs given 
genotypes of tag SNPs or low-coverage 
sequencing 

• Genotyping arrays include up to 1 million 
tag SNPs
– tag SNPs are those that “tag” other common 

SNPs but are less strongly associated with 
each other 

• Illumina: 700K SNPs
• Affymetrix: 1 million SNPs
• genotyping cost ~ £50 per individual

• Can use chip genotypes with reference 
haplotypes from HapMap or 1000G to 
impute genotypes at untyped SNPs



Practical steps in designing a genome-wide 
association study
• Define the traits to be studied

– Can use genetic relationship matrix to define a 
phenotype or sub-phenotype that has high 
proportion of variance explained by common 
SNPs

• Define the sampling protocol: case-control, 
cross-sectional or (rarely) cohort, consent, 
data sharing agreements

• Type a genome-wide SNP array: usually at 
least 500K SNPs
– cost now ~ £50 per chip



Practical steps in preparing genome-wide 
association data for analysis

• Data warehousing
– use a relational database for clinical data, 

variant call format for genotypes

• Drop SNPs with poor quality scores
– proportion of missing values, Hardy-Weinberg 

equilibrium

• Score individuals for genetic background
– Use principal components analysis with 

thinned SNPs to derive first few principal 
components as covariates to control for 
population stratification



Analysis of genome-wide association studies

• Impute genotypes at untyped loci using 
1000 Genomes as reference panel (MACH, 
IMPUTE)

• Test imputation of SNPs with low minor 
allele freq using a subset of typed loci set 
to missing

• Test SNPs for association one at a time, 
adjusting for population stratification
– QQ quantile plot to see if variance of test 

statistical is inflated
– Manhattan plot is a useful visual summary



Manhattan plot for 402,951 SNPs from meta-
analysis of genome-wide association studies 
of adult height



Alternatives to univariate SNP-based 
analyses

• Gene-based tests
– Intragenic SNPs annotated by gene name
– can test each gene for association/enrichment 

• Pathway-based tests
– Pathway databases (e.g. KEGG) can be used to 

annotate genes and thus intragenic SNPs
– Can test each pathway for 

association/enrichment

• Multivariate tests
– where you have multivariate outcome 

measurements



What do you do with a GWAS “hit”?

• Annotate the associated SNPs
– which genes are nearest?
– do any of the associated SNP have predicted 

effect on protein sequence or expression?
– are any of the SNPs eQTLs?

• Study possible functional effects of nearby 
genes
– expression in disease states
– knockouts / transgenic animals

• Study effect of SNPs that predict disease 
on intermediate phenotypes / biomarkers



What strength of evidence is required to 
declare a genetic association?

• Classical approach: correct for multiple 
tests
– For 1 million independent tests, reduce 

threshold p-value by factor of  1 million to 5 x 
10-8 (Bonferroni correction)

• Bayesian argument:
– Posterior odds = likelihood ratio x prior odds
– Prior odds that the SNP is associated with disease 

are very low (~ 10-5)
– For posterior odds of 10 to 1, we should require 

Bayes factor (likelihood ratio) of 106 



Problems with correction for multiple tests

• How many tests were done? 
– number of tests reported in this paper
– number of tests that could have been done in this 

study
– number of tests that could have been done in all 

studies of this outcome (assuming that only 
positive tests are reported)

• False discovery rate
– estimate proportion of true positives assuming a 

uniform distribution of p-values under the null



Bayesian hypothesis testing requires us to 
specify a prior on effect size

• Null hypothesis H
0
: 

prior on effect size 
is spike at 0

• Alternative 
hypothesis H

1
: 

gaussian prior,  SD 
based on belief 
about  plausible 
effect sizes 



Clayton 2003: relationship between p-value 
and Bayes factor (gaussian prior on effect size 
under non-null hypothesis H

1
)

• Lines are for powers 
of 0.001, (dots), 0.01 
(dashes), 0.1, 0.5, 0.9 
and 0.99 (lines) to 
detect effect of size 
expected under prior

• Severely 
underpowered studies 
require smaller -values 
to convince



How Bayes factor penalizes implausibly large 
effects in underpowered studies



Bayesian interpretation of p-values

• Given a positive result in a diagnostic test
likelihood ratio = sensitivity / (1 – specificity)

• Significance test can be viewed as a diagnostic 
test: 
– threshold p-value = 1 – specificity
– power to detect effects of plausible size = 

sensitivity
– Likelihood ratio = power / threshold p-value

• p-values are misleading if study is underpowered 
to detect effects of plausible size



How much of the genetic effect on complex 
diseases and traits is explained by known 
variants? 

• Heritability of a continuous trait
– = genetic variance / total variance of trait
– Total heritability = sum of locus-specific 

contributions

• Sibling recurrence risk ratio for a binary 
(disease) trait 
– = risk to sibling of case / risk in general 

population
– Total sibling risk ratio = product of locus-

specific contributions



Established Type 2 diabetes susceptibility 
loci (McCarthy MI 2009)



Why is most familial aggregation still 
unexplained by known variants?  height as an 
example

• In populations where childhood 
malnutrition is rare, heritability of adult 
height is 0.8 – 0.9

• GWAS have identified 40 loci that affect 
height, but their total effect is < 5% of 
population variance
– All effects discovered so far are very small



Possible explanations for missing heritability 
(“dark matter”)

• Epistatic effects (gene-gene interactions)
• Copy number variants not detected by 

standard genotyping assays
• Rare variants with large effects, not 

detected by tag SNP mapping because of 
allelic heterogeneity

• Polygenic model
– many common variants of tiny effect, 

undetectable at genome-wide significance 
even in large meta-analyses



How much genetic variance is accounted for 
by epistasis? 

• Contribution of epistasis can be estimated 
by comparing concordance rates for 
monozygotic twins and parent-offspring 
pairs
– if all genetic effects are additive, MZ twin 

concordance is twice parent-offspring 
concordance

– Only for a few disorders (notably 
schizophrenia) is MZ twin concordance much 
higher than predicted from additive model

• Evolution selects only additive genetic 
effects



How much unexplained genetic variance is 
accounted for by copy number variants?

• Copy number variation: duplication or 
deletion of all or part of a gene
– Not detectable by standard genotyping assays
– run of SNP genotypes with increased signal of 

one allele may indicate duplication
– run of homozygous SNP genotypes with  

reduced signal may indicate deletion

• Systematic studies of copy number 
variation don't support hypothesis that this 
accounts for a high proportion of genetic 
variance



Example of rare variant effects: 
hypertriglyceridemia (Johanson 2010)

• 4 top hits in GWAS: APOA5, GCKR, LPL, 
APOB

• These 4 genes resequenced in 438 cases 
and 327 controls

• Carrier frequency of rare variants: 28% in 
cases, 15% in controls



Fisher (1918): genetic variance can be 
estimated from correlation of “genes” 
between relatives
• Additive polygenic model

– Genotypic value (X, expected value of trait 
given genotype) = population mean + sum of 
many small effects at loci that segregate 
independently

– genetic effects (g
1i
,  ...., g

Ti
) are standardized to 

zero mean
– Trait value Y is X plus random environmental 

effect
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Correlation between relatives (assuming no 
environmental covariance) is the correlation 
of their genetic effects 
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– equivalent to correlation coefficient if 
variances of effects are scaled to sum to 1

– geometric interpretation: dot product of two 
vectors measures how similar they are (cosine 
of angle between vectors)



Genetic variance inferred from correlation 
between relatives

• Fisher showed that 

• Cov(X
1
, X

2
) = R V

A
 where V

A
 is additive 

variance, R is relationship coefficient
• Relationship coefficient is proportion of 

genome identical by descent
– 1 for MZ twins, 0.5 for parent-offspring, 0 for 

unrelated individuals

• Fisher showed good fit to studies of height: 
correlation between relatives is proportional 
to degree of relationship



Estimating genetic variance from unrelated 
individuals

• Additive genetic variance can be estimated 
from the relationship of trait covariance to 
the relationship coefficient 

• Relationship coefficient can be computed 
directly from SNP genotypes as the 
correlation of genotypes between 
individuals

• These correlations can also be computed 
for unrelated individuals



Interpretation of genetic variance estimated 
from SNP relationship matrix

• For related individuals, matrix of 
relationship coefficients can be calculated 
either from pedigree or from SNP genotypes
– additive variance estimate includes effects of  

common and rare variants

• For unrelated individuals, relationship 
matrix can still be computed from SNP 
genotypes but most off-diagonal coefficients 
will be close to 0
–  additive variance estimate excludes effects of 

rare variants



How much genetic variance is explained by 
common SNPs? (Yang 2010, many 
subsequent papers from same group)

• ~4000  individuals typed with ~300K SNPs

• SNP genotypes used to calculate “relationship 
matrix” between apparently unrelated individuals
– SNP relationships are represented in a matrix of 

correlations between genotypes of persons
– diagonal elements are 1, off-diagonal elements 

have mean zero 
– coefficients between unrelated individuals 

typically vary between -0.02 and +0.02

• Genetic variance estimated from dependence of 
pairwise concordance on relationship coefficient



How much variance in height is explained by 
common SNPs? (Yang 2010)

• Additive genetic variance of height is ~ 
80% of total variance

• Associations with 50 SNPs that meet 
genome-wide significance account for ~5% 
of variance.

• SNP relationship matrix shows that GWAS 
SNPs account for 45% of variance

• Allowing for incomplete tagging of causal 
variants, SNPs may explain 54% to 84% of 
total variance.   



How is genetic variance estimated from SNP 
relationship matrix? 

• Crude method: regress squared difference 
in trait values on pairwise relationship 
coefficients
– Genetic variance is minus half the regression 

slope

• More advanced method: fit a model in 
which the trait values arise from a 
multivariate gaussian distribution with 
covariance matrix proportional to the SNP 
relationship matrix
– Software is available (e.g. GCTA)



Can genetic variance explained by common 
SNPs be partitioned? 

• Yang 2011: height, body mass index, 
vonWillebrand factor, Q-T interval in 
~12000 individuals typed with ~570K 
SNPs

• Variance explained by SNPs on each 
chromosome scales with length of 
chromosome

• Intragenic SNPs (50% of panel) account 
for 3 x variance explained by intergenic 
SNPs



Implications of SNP genetic variance studies

• GWASs to discover novel associations 
with SNPs will have diminishing returns
– “Missing heritability” isn't really missing: 

undermines case for resequencing studies to 
discover rare variants of large effect

• Intermediate pathway effects may be 
sparser than genotypic effects

• Prediction from SNP genotypes is possible 
in principle, but learning models from 
genotype-outcome associations alone will 
require very large sample sizes



How much genetic variance is accounted for 
by common variants with weak effects?

• Best prediction of outcome in a test dataset 
is improved by allowing the model to 
retain many SNPs with small effects that 
are below the conventional threshold for 
genome-wide significance

• Using SNP genotypes to estimate genetic 
variance explained by common SNPs



Prediction from high-dimensional data
• Dimensionality reduction where many 

variables are correlated
– Principal components analysis (PCA)

• Can use supervised or sparse PCA to select relevant 
variables

• Non-parametric methods
– learn a function (kernel) that evaluates the 

similarity between pairs of observations

• Sparse priors (e.g. LASSO regression)
– encode prior belief is that effects are mostly small 

or near zero
– sparsity parameter can be learned from the data



LASSO regression

• Least Absolute (value) Shrinkage and Selection 
Operator

• Standard regression programs maximize log-
likelihood (probability of data given model) as a 
function of regression coefficients β

• LASSO regression maximizes
log-likelihood - λ Σ | β

i 
|, where λ is a parameter 

controlling sparsity
– best value of λ is learned by cross-validation 

against withdrawn observations
– value of λ determines how many variables are 

retained in the model (non-zero coefficients)



Bayesian interpretation of LASSO regression

• LASSO regression is equivalent to 
specifying a prior belief that large effects 
are less probable than small effects, and 
many effects are close to zero 
– Specifically, the LASSO penalty is equivalent 

to double exponential priors on the regression 
coefficients) 

–  λ is a scale parameter that controls the 
strength of the prior: large values force 
regression coefficients towards zero. 



LASSO regression and the double exponential 
prir

• Parameter λ specifies 
the strength of the 
prior (penalty for 
large effect sizes)
– learned from data by 

cross-validation



How double exponential prior encodes sparsity

• 2D probability 
density looks 
like a pyramid
– See contour 

plot

• Density varies 
inversely with 
sum of absolute 
values of effect 
parameters



Why do we need to use cross-validation to learn 
and to evaluate a predictive model?

• To evaluate predictive performance 
– on test data that have never been used to learn the 

model
– no need for a separate validation study (but may be 

hard to convince reviewers / regulatory agencies of 
this)

• To tune the learning algorithm
– Optimal number of variables to retain
– More generally, learn parameters that control how 

much the model adapts to the data
– Models that adapt too much will overfit



N-fold cross-validation

• Partition dataset into N disjoint test folds
• For each test fold, all other observations are the 

corresponding training set

• For each test/training fold
– a model is fitted to the training fold and 

predictions are evaluated on the test fold
– Predictive performance is evaluated by summing 

over all test folds
• For each observation, can compare observed value with 

value predicted from model fitted to the corresponding 
training fold

• Can compute area under ROC curve
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With 4-fold cross-validation, each  
observation appears in one test fold 
and in 3 training folds

Cross-validation compared with a 
conventional test/training split
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If we are using cross-validation 
to tune the model and also to 
evaluate predictive performance, 
we need nested cross-validation.

Inner folds are used to tune the 
model (e.g. learn the optimal 
setting of the LASSO penalty 
parameter

Outer folds are used to evaluate 
performance of the tuned model

With 10-fold cross-validation, 
nested cross-validation requires 
100 model fitting runs

Nested cross-validation



Using allele scores to predict outcome

• Allele scores can be computed from 
summary results of a GWAS

• (1) filter  SNPs to select those that have p-
value below some threshold
– can be less stringent than the conventional 

threshold for declaring genome-wide 
significance

• (2) Calculate individuals'scores as sum of 
filtered SNP genotypes weighted by the 
regression coefficients
– Use this score as a predictor



Performance of allele score for schizophrenia 
as predictor on test data as function of p-
value threshold for filtering SNPs on training 
data (Dudbridge 2013)



The future of genotypic prediction

• Allele scores can be computed from 
summary level meta-analyses which are 
available for very large datasets

• LASSO predictors should outperform 
allele scores but constructing them requires 
access to individual-level data

• Genotypic effects on biomarkers are more 
oligogenic than effects on disease
– Can learn genotypic predictors of biomarkers 

from cross-sectional studies, then use them as 
“features” to construct disease predictors 
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